
Impact of Coding Styles on Behaviours of Static
Analysis Tools for Web Applications

Ibéria Medeiros, Nuno Neves
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

imedeiros@di.fc.ul.pt, nuno@di.fc.ul.pt

I. INTRODUCTION

Web applications have become an essential resource to ac-
cess the services of diverse subjects (e.g., financial, healthcare)
available on the Internet. Despite the efforts that have been
made on its security, namely on the investigation of better
techniques to detect vulnerabilities on its source code, the
number of vulnerabilities exploited has not decreased [1].

Static analysis tools (SATs) are often used to test the secu-
rity of applications since their outcomes can help developers
in the correction of the bugs they found [1]. There are SATs
that only detect SQL injection (SQLi) and cross-site scripting
(XSS) vulnerabilities [2], as they are the two most exploited
[3], and others detect a few more classes of vulnerabilities
[4][5]. However, the conducted investigation made over SATs
stated they often generate errors (false positives (FP) and
false negatives (FN)), whose cause is recurrently associated
with very diverse coding styles, i.e., similar functionality is
implemented in distinct manners, and programming practices
that create ambiguity, such as the reuse and share of variables.

Based on a common practice of using multiple forms in a
same webpage and its processing in a single file, we defined
a use case for user login and register with six coding styles
scenarios for processing their data, and evaluated the behaviour
of three SATs (phpSAFE [2], RIPS [4] and WAP [5]) with
them to verify and understand why SATs produce FP and FN.

II. USE CASE AND SCENARIOS

a) Multiple Forms Use Case: Multiple forms have been
a practice used in current websites, e.g., for login and register
a user (e.g., Facebook), but they are not limited to this. the
HTML code that supports them is always the same, i.e., forms
containing several input elements for designing the various
pieces (e.g., buttons, input box, check box) they comprise.
Another aspect that is common to multiple forms is that the
server-side code (e.g., PHP) that receives and processes them
is usually on the same file. Moreover, since only a form can be
processed in turn, developers use the same variables to receive
the user data coming from forms, and some parts of the code
is common to all forms. Besides these practices, which are
not incorrect, the way that the data processing is codded can
differ among developers, but for the same purpose.

Listing 1 presents the PHP code for processing the user
login and register operations. Variables $email and $pw
will receive the common entry points of both forms. This
means that they are the same for both forms but are processed

separately and in distinct operations (login and register). Also,
variables $sql and $res will be (re)used along the file to
compose queries and get their results.

1 <?php
2
3 // common variables to both forms.
4 //$email = $_GET["email"];
5 //$pw = $_GET["email_pass"];
6
7 // code to process the login form
8 if (isset($_GET["login"])) {
9 $email = $_GET["email"];

10 $pw = $_GET["email_pass"];
11 $sql= "SELECT * FROM users WHERE addr =’".$email."’

AND addr_pass =’".$pw."’";
12 $res = mysqli_query($con, $sql);
13 }
14
15 // code to process the register form
16 if (isset($_GET["register"])) {
17 $name = $_GET["name"];
18 $email = $_GET["email"];
19 $pw = $_GET["email_pass"];
20 $pw_conf = $_GET["email_pass_conf"];
21 $sql= "SELECT * FROM users WHERE addr =’".$email."’";
22 $res = mysqli_query($con, $sql);
23 if (mysqli_num_rows($res) != 0)
24 echo "This user already exist";
25 else{
26 if ($pw === $pw_conf){
27 $sql = "INSERT INTO users (’name’, ’email’,

’password’) VALUES (’".$name."’,
’".$email."’, ’".$pw."’)";

28 $res = mysqli_query($con, $sql);
29 }else
30 echo "Passwords do not match";
31 }
32 }
33
34 // code to process the final query of both forms
35 //$res = mysqli_query($con, $sql);
36
37 // code to process the login form
38 //if (isset($_GET["login"])) {
39 // $email = $_GET["email"];
40 // $pw = $_GET["email_pass"];
41 // $sql= "SELECT * FROM users WHERE addr =’".$email."’

AND addr_pass =’".$pw."’";
42 //}
43
44 // code to process the login form
45 //if (isset($_GET["login"])) {
46 // $res = mysqli_query($con, $sql);
47 // if (mysqli_num_rows($res) == 1)
48 // echo "Login successful"
49 //}
50 ?>

Listing 1. PHP code for processing the user login and register forms.

b) Coding Style Scenarios: Based on the code of Listing
1, we defined six coding style scenarios for processing the
data provided from login and register forms. For that, we

FL code
{L7 - L13}

FR code
{L15 - L32}

SC-1 SC-2

Common
{L3 - L5}

SC-3 SC-4 SC-5 SC-6

FL code
{L7 - L13}
\ {L9, 10}

FR code
{L15 - L32}
\ {L18, L19}

Common
{L34 - L35}

FL code
{L7 - L13}

\ {L12}

FR code
{L15 - L32}

\ {L28}

Common
{L3 - L5}

FL code
{L7 - L13}

\ {L9, L10, L12}

FR code
{L15 - L32 }
\ {L18, L19, L28}

Common
{L34 - L35}

FR code
{L15 - L32}

FL code - P1
{L37 - L42}

FL code - P2
{L44 – L49}

FL code - P1
{L7 - L13}

\ {L12}

FR code
{L15 - L32}

FL code - P2
{L44 – L49}

Fig. 1. Considered scenarios to process multiple forms on a single PHP file.

identified different code blocks (cb), and then we built the
scenarios. Figure 1 shows these scenarios with their code
blocks, specifying the code lines for each of them (between
braces). Specific cb for login operation are green, whereas cb
for register operation are blue. Orange cb are those that are
common on processing of both forms. The light green cb is
the code of the login operation but split on two cb (P1 and P2).
Analyzing the code of Listing 1, the first scenario (SC-1) is
active. To enable the other scenarios, it needs to activate their
lines, by uncommenting some lines and commenting others.
Finally, the notation {Lx−Ly} \ {Lz} means that the cb is
defined by the {Lx−Ly} range of lines of code, except the Lz
line. For example, SC-2 is composed as follows: a common
cb which is executed for both operations, a cb that is only
executed for login operation, and a cb that is only executed
for register operation. Each scenario contains three SQLi: one
on the login operation and two on the register operation.

III. ANALYSIS OF SAT’S BEHAVIORS

We run the three tools over the six scenarios and we
analysed their outcomes to understand their behaviours and
check the veracity of their results. All SATs had the same
results and behaviours. Table I presents the results.

a) SC-1 and SC-2: For these scenarios, the tools cor-
rectly detected all vulnerabilities. These results are justified
by the facts of the code for login and register operations is
well delimited in both scenarios and the entry points are used
in a distinct sink, which only belongs to an operation. This
can reduce SATs to incur in a wrong analysis. Although SC-2
has a common cb, containing the shared entry point for both
operations, it does not affect the SATs’s behaviour since the
variables $email and $pw that receive these entries do not
change (reassigned) along the cb of each operation.

TABLE I
RESULTS OF SATS OVER THE SIX CODDING STYLE SCENARIOS.

Scenario Vulnerability TP FN FP

SC-1
{L9, L10, L11, L12}
{L18, L21, L22}
{L17, L18, L19, L27, L28}

1
1
1

SC-2
{L4, L5, L11, L12}
{L4, L21, L22}
{L4, L5, L17, L27, L28}

1
1
1

SC-3
{L18, L21, L22}
{L9, L10, L11, L35}
{L17, L18, L19, L27, L35}

1

1 1

SC-4
{L4, L21, L22}
{L4, L5, L11, L35}
{L4, L5, L17, L27, L35}

1

1 1

SC-5
{L18, L21, L22}
{L17, L18, L19, L27, L28}
{L39, L40, L41, L46}

1
1
1

SC-6
{L9, L10, L11, L46}
{L17, L18, L19, L27, L28}
{L18, L21, L22}

1
1

1
1: L46

TP: true positive; FN: false negative; FP: false positive.

b) SC-3 and SC-4: All tools correctly detected two
vulnerabilities and had a FN. Both scenarios include common
blocks. SC-4 has the same common cb as SC-2, which
does not interfere in the SAT’s analysis as we see above.
In contrast, the common cb that ends both scenarios affects
the analysis performed by tools. This cb contains a sink
that receives two distinct sets of entry points, each one from
each login and register operation. Also, the $sql variable is
used in both operations. Since only one operation is expected
to be executed, the programmer’s decision of using these
variables and sink the same way for both operation is correct.
However, SATs do not have this knowledge, hence, this leads
to FN. Therefore, SATs only detected the vulnerability whose
$sql is assigned closer to the common sink (i.e., the second
vulnerability of register operation), and generated a FN for the
vulnerability where $sql is assigned farther from that sink.

c) SC-5: All tools detected the three vulnerabilities.
Their outcomes are justified by the absence of common cb,
the register operation code is well delimited and the login
operation code is split on two blocks (P1 and P2), but as they
are sequential, they work as a single block.

d) SC-6: This scenario was the one that tools had the
worsts results. The tools correctly detected two vulnerabilities
and produced a FN and a FP in which it is an inexistent
execution path. The composition of SC-6 is similar to SC-5;
however, P1 and P2 are placed, respectively, before and after
the register operation block. P2 contains the sink that receives
the query composed on P1. The vulnerability associated with
the login operation is not detected (FN) and in its place is
produced a FP. As SATs are not able to distinguish the code
that belongs to each operation, their result can lead to false
execution paths; so, FP and FN.

The results shows that SATs are built having in mind how to
detect specific vulnerabilities, without considering the coding
styles. Moreover, these styles underlie SATs errors, and for
the best of our knowledge, their impact on SATs never was
studied. These results are the outcome of a preliminary study
that we conducted and they call for the action for a new
generation of SAT tools.

Acks. This work was supported by FCT through project SEAL
(PTDC/CCI-INF/29058/2017, LISBOA-01-0145-FEDER-029058,
POCI-01-0145-FEDER-029058), and the LASIGE Research Unit
(UIDB/00408/2020 and UIDP/00408/2020).

REFERENCES

[1] WhiteHat Security, “The DevSecOps Approach - Using AppSec Statistics
to Drive Better Outcomes,” Nov. 2019.

[2] P. Nunes, J. Fonseca, and M. Vieira, “phpSAFE: A security analysis
tool for OOP web application plugins,” in Proceedings of the 45th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, Jun. 2015.

[3] J. Williams and D. Wichers, “OWASP Top 10 2017 – The Ten Most
Critical Web Application Security Risks,” 2017.

[4] J. Dahse and T. Holz, “Simulation of built-in PHP features for precise
static code analysis,” in Proceedings of the 21st Network and Distributed
System Security Symposium, Feb 2014.

[5] I. Medeiros, N. F. Neves, and M. Correia, “Automatic detection and
correction of web application vulnerabilities using data mining to predict
false positives,” in Proceedings of the International World Wide Web
Conference, Apr. 2014, pp. 63–74.

