Finding Web Application Vulnerabilities with an
Ensemble Fuzzing

Joao Caseirito, Ibéria Medeiros
LASIGE, Faculdade de Ciéncias, Universidade de Lisboa, Portugal
jeaseirito@lasige.di.fc.ul.pt, imedeiros @di.fc.ul.pt

I. INTRODUCTION

Cyberattacks have been a constant on the Internet and
their impact and cost have risen to billions of dollars. They
are usually associated with the exploitation of vulnerabilities
in web applications, the most common form of accessing
services and organizations’ data. These applications support
a myriad of services for handling multiples daily needs of our
lives (e.g., social media, e-commerce, bank account access).
There are currently almost 2 billion of websites active [1]
and the number of vulnerabilities disclosed and associated
with applications they handle continues growing [2]. Cross
Site Scripting (XSS) and SQL injection (SQLi) are the two
most prevalent web vulnerabilities and they pose the first
place in OWASP Top 10 [3]. Although these vulnerability
classes are really well known, they continue appearing in
recent applications used by millions of consumers [4].

Many techniques have been used for systematically detect-
ing vulnerabilities, where fuzzing is the most precise and
capable of exploiting them [5][6][7]. However, it does not
identify them on the code, placing this task effort on the
programmers’ side. Contrarily, code inspection tools can lo-
calize vulnerabilities for programmers [8][9][10][11], but their
results can be imprecise or (even when correct) unexploitable
[12], requiring programmers to separate the true from false
positives. Hence, empowering programmers with tools for
the systematic and accurate identification of vulnerabilities is
extremely beneficial for them.

This work introduces an Ensemble Fuzzing (EF) approach to
identity real vulnerabilities existing in web applications written
in PHP. The goal is to provide a combination of black-box
fuzzers that use fuzzing to discover vulnerabilities by doing
input injection and to identify the PHP code of the exploited
vulnerabilities, i.e., the real vulnerabilities, by extracting the
executed code traces that are exercised by the injected inputs.

II. CHALLENGES

Doupé et al. [13] defined as being the biggest challenge of
black-box fuzzing tools the determination of interactions that
can change the state of the application, and thus, for getting
and discovering the maximum of code coverage and vulner-
abilities, respectively. For instance, using the same requests
with distinct inputs or sending them in a different order can
result in different executed paths. Hence, without considering
this, the code coverage and vulnerabilities could be missed.

In addition to this challenge, we can derive two others
for web vulnerability fuzzers. These fuzzers comprise two
components — crawler and scanner'. The former inspects the
attack surface of the web application under test to extract
the URLs with their entry points (web requests), whereas
the latter performs attacks over these URLs. However, there
is no certainty that the crawler extracts all valid URLs the
application contains, i.e., if it is capable of extracting all entry
points from the attack surface, and composing valid URLs with
them. Contrarily, for the scanner, there is no guarantee that it is
capable of exploiting the possible vulnerabilities contained in
the application, i.e., if it is able to exercise the URLs with the
correct injected code capable of exploiting the vulnerabilities.

Finally, the last challenge is how to extract traces of the
code executed when the scanner carries out the attacks, without
accessing and inspecting the source code of the application.
In addition, given all traces, how to identify which ones are
associated with the exploited vulnerabilities.

III. THE ENSEMBLE FUZZING APPROACH

The EF approach aims to improve the findings of web
vulnerabilities, identifying their code in the application, and
increase the code coverage by exploring the same set of URLs
with different fuzzers. We propose an approach that combines
different fuzzers and resorts from the best they have in order to
improve the resolution of the challenges presented in Section
II, by increasing the probability of exploiting a vulnerability
by using several fuzzers that will exercise the same requests.

The approach encompasses three phases — Crawling, At-
tacking and Vulnerability Identification.

a) Crawling.: Based on the URL of the target appli-
cation, the crawlers explore recursively the attack surface of
the web application in order to discover all requests that the
application receives. To do so, for the requests they sent, the
content of their responses is analyzed and the entry points
they contain are collected (i.e., the points of the application
that allow the insertion of inputs). However, since distinct
crawlers can extract the same request, a deduplication step
takes place to remove the duplicated requests. The resulting
requests are uniformized into an uniform format in order to
be understandable by the different scanners in the next phase.
The outcome of this phase is a list with distinct requests
(uniformized), indicating for each one which fuzzers found

'We call scanner instead fuzzer to distinguish it from the fuzzer as a whole.



it. Despite the duplicated requests being eliminated, the list
contains all fuzzers that found them.

b) Attacking.: The goal of this phase is to exploit vulner-
abilities existing in the web application under test by exploring
the resulting requests of the previous phase. For that, each
request contained in the list is delivered to scanners after it
being prepared according the format of each scanner. Scanners
exercise the requests with malcraft inputs to attempt to find
some vulnerability. At the end, for each scanner, a list of the
found vulnerabilities is provided, as well as the request that
exploited them.

c) Vulnerability Identification.: This phase aims to iden-
tify the code of the exploited vulnerabilities, without accessing
and inspecting the source code of the application. For that,
while the attacks are being preformed, the traces of the code
generated by the execution of the injected inputs on the
application are extracted by a monitor, and then correlated
with the information provided by the previous phase in order to
identify which of them match with the requests that exploited
the vulnerabilities. At the end, the identified vulnerabilities
and their exploits will be outputted.

We are currently developing a prototype of our EF. The first
two phases are already implemented with three fuzzers: Wapiti
3.0.3 [14], w3af 2019.1.2 [15], and OWASP ZAP 2.9.0 [16]
(ZAP for short). The third phase is under development. The
fuzzers were configured to detect XSS (reflected (XSSed) and
stored (XSSored)) and SQLi, and to make the login authentica-
tion and establish sessions automatically. The ensemble itself,
the interactions between the two phases and the correlation of
their results were implemented by us in Python.

IV. PRELIMINARY RESULTS

The objective of the experimental evaluation was to answer
the following questions: (1) Can EF discover vulnerabilities
that would be missed if the fuzzers used only the requests
found by their crawlers? (2) Can EF improve the vulnerability
findings and the code coverage?

We evaluated EF with three known vulnerable open-source
web applications: Damn Vulnerable Web App (DVWA)?,
Mutillidae®, and Buggy Web Application (hWAPP) *.

All crawlers had different results and there is no crawler
that is the best. The rate of common requests discovered by
all crawlers was 28% (29 out of the 103) in DVWA, 19.5%
(90 out of the 461) in Multilidae, and 13% (52 out of the 405)
in bWAPP. However, the number of equal requests outputted
by two crawlers was greater compared with the previous rate.
Almost or even more than 50% of the requests found by each
crawler were only discovered by it (called the unique requests).
Such results denote the existing discrepancy in what crawlers
can discover. Also, there are requests that are missed by some
crawlers that may contain vulnerabilities and that would not
be found by the fuzzers whose crawlers have lost.

Zhttp://www.dvwa.co.uk/
3https://github.com/webpwnized/mutillidae
“http://www.itsecgames.com/

For scanners, the results vary with the complexity of each
web application. Again, there is no scanner that is the best.
EF improves the precision on finding vulnerabilities, denoting
that scanners are able to explore requests that were found
by other crawlers. Into the EF, w3af was the fuzzer that
had a higher increase in its precision. ZAP exploited more
vulnerabilities in DVWA, while Wapiti had better results
in the Mutillidae and bWAPP applications. We compared
the reported vulnerabilities between scanners, identifying the
unique and common findings. The common findings ranges
27% — 50% between all scanners, and 14% — 49% between
two scanners. The unique findings in average are 39%. Into the
EF, Wapiti and ZAP had a greater number of unique findings,
varying according to the application tested.

The preliminary results showed that it is beneficial in having
an EF for finding web vulnerabilities, specially in those cases
where it is able to detect vulnerabilities that would be missed
if the fuzzers would run individually. They also showed that
EF performs better than fuzzers individually.

Acknowledgments. This work was partially supported by the
national funds through FCT with reference to SEAL project
(PTDC/CCI-INF/29058/2017, LISBOA-01-0145-FEDER-
029058, POCI-01-0145-FEDER-029058) and LASIGE
Research Unit (UIDB/00408/2020 and UIDP/00408/2020).

REFERENCES

[1] Internet live stats, “Total number of websites,” Mar. 2021,
https://www.internetlivestats.com/total-number-of-websites/.

[2] NVD, http://nvd.nist.org.

[3] J. Williams and D. Wichers, “OWASP Top 10 2017 — The Ten Most
Critical Web Application Security Risks,” 2017.

[4] K. Ryan, “Patched zoom exploit: Altering camera settings via remote sql
injection,” Jun 2020, https://medium.com/@keegan.ryan/patched-zoom-
exploit-altering-camera-settings-via-remote-sql-injection-4fdf3de8a0d.

[5] F. Duchene, S. Rawat, J.-L.. Richier, and R. Groz, “Kameleonfuzz:
evolutionary fuzzing for black-box xss detection,” in Proceedings of the
ACM Conference on Data and Application Security and Privacy, 2014,
pp. 37-48.

[6] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and Z. Su,
“Enfuzz: Ensemble fuzzing with seed synchronization among diverse
fuzzers,” in Proceedings of the 28th USENIX Security Symposium, Aug.
2019, pp. 1967-1983.

[7]1 L. Demetrio, A. Valenza, G. Costa, and G. Lagorio, “WAF-A-MoLE,”
Proceedings of the 35th Annual ACM Symposium on Applied Computing,
Mar 2020.

[8] J. Dahse and T. Holz, “Simulation of built-in PHP features for precise
static code analysis,” in Proceedings of the 21st Network and Distributed
System Security Symposium, Feb 2014.

[9]1 P. Nunes, J. Fonseca, and M. Vieira, “phpSAFE: A security analysis

tool for OOP web application plugins,” in Proceedings of the 45th

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks, Jun. 2015.

I. Medeiros, N. F. Neves, and M. Correia, “Detecting and removing web

application vulnerabilities with static analysis and data mining,” IEEE

Transactions on Reliability, vol. 65, no. 1, pp. 54-69, March 2016.

, “DEKANT: a static analysis tool that learns to detect web

application vulnerabilities,” in Proceedings of the 25th International

Symposium on Software Testing and Analysis, Jul. 2016.

I. Medeiros and N. Neves, “Effect of coding styles in detection of

web application vulnerabilities,” in Proceedings of the 16th European

Dependable Computing Conference, 2020, pp. 111-118.

A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state:

A state-aware black-box web vulnerability scanner,” in Proceedings of

the USENIX Conference on Security Symposium, Aug 2012, pp. 26-26.

Wapiti, https://wapiti.sourceforge.io.

[10]

(11]

[12]

[13]

[14]



[15] w3af, http://www.w3af.org.
[16] ZAP Proxy, https://www.zaproxy.org.



