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Abstract—Fuzzers are often considered one of the most 
effective tools to uncover bugs in software, including security 
vulnerabilities. Current tools are designed to test the full programs 
by employing strategies that select and generate testcases that 
increase code coverage. In this paper, we propose to evolve these 
ideas to make fuzzers focus on specific portions (i.e., lines) of the 
code, which we call targets, avoiding wasting resources on the 
other regions. The aim is to support efficient testing of evolving 
software, and other practical scenarios such as confirming the 
results from static analysis. 

Keywords—Testing, Target Fuzzing, Vulnerability Discovery 

I. INTRODUCTION 

Security vulnerabilities in software allow malicious actors to 
subvert normal operation, often with dire consequences, 
including loss of property and reputational damage. According 
to Common Vulnerabilities and Exposures (CVE), the number 
of new entries surpassed 55.000 over the period 2019-21 [1]. 
When organized by type, several of the most prominent classes 
are associated with bugs usually found in software programmed 
with the C/C++ languages, such as overflows, memory 
corruptions, and arbitrary code execution. Moreover, C/C++ is 
regularly the choice for critical application development, and 
therefore, it is of utmost importance to expand the vulnerability 
discovery capabilities in these languages. 

Fuzzing is highly effective at checking complex codebases, 
usually being able to discover flaws in programs previously 
analyzed with other techniques. A coverage-guided fuzzer 
operates in a conceptually straightforward manner, following an 
approach akin to a genetic algorithm. The fuzzer executes 
iteratively in a loop. It begins with a few user-supplied inputs (or 
testcases), which are provided to the program under test in 
independent executions. Feedback data is captured at runtime 
allowing the fuzzer to recognize coverage-gaining inputs (e.g., 
additional statements/basic blocks are reached), which are 
retained for the next phase. These inputs are also evolved 
(various mutation and crossover strategies are applied) to 
produce many offspring, and the loop starts over again with a 
new generation of testcases. While running, the fuzzer searches 
for program misbehaviour (e.g., out-of-bounds memory access) 
as an indication that a bug was activated. The corresponding 
input is then given to developers facilitate debugging activities. 

Fuzzing is, however, extremely slow. For example, a recent 
fuzzer took 60 days of testing to find a few tens of bugs in 
databases [2]. A benchmark recently published showed that even 
after spending over 200 000 CPU-hours, only 46% of the 
injected vulnerabilities (54 in 118) were detected by a group of 
7 state-of-the-art fuzzers [3]. These fuzzers operate by checking 
the whole program, as the aim is to extend testing to as many 

statements as possible. However, this is not appropriate if one 
needs to test evolving software, which comes into play in many 
practical scenarios, such as when a new release is created, when 
a patch needs to be assessed, to verify reports from static 
analysis tools, and to reproduce previously observed failures. 
Here, fuzzing should focus on certain sections of the code, to 
avert exhausting the available time for testing with superfluous 
analyses.  

Our goal is to design and implement a fuzzer that when given 
a list of lines of code, which we call targets, focusses its energy 
in reaching those lines with appropriate input testcases, and then 
tests them (and the lines around) exhaustively. 

II. CHALLENGES 

A. Diversity of scenarios 

Depending on the testing scenario, the targets can appear in 
the code in very different manners. For example, they can form 
a cluster of statements (e.g., a function was changed and needs 
to be tested) or they can be spread over various files of the 
program; they can be composed by a small group of instructions 
(e.g., a patch or a particular line identified by static analysis) or 
can correspond to tens of thousands of lines of code (e.g., 
checking modifications before a new release). Independently, 
the goal is to efficiently find inputs that can reach the targets, so 
that they can be evolved by the fuzzer, to check those lines with 
many combinations of values, eventually triggering a bug. 

B. Determining if inputs are progressing towards targets 

Existing coverage-guided fuzzers employ highly optimized 
data structures to identify inputs that lead to novel program 
coverage. The ability to perform this selection is of fundamental 
value because it allows the fuzzer to distinguish inputs that are 
worthy to continue mutating. These data structures are, however, 
unable to determine if inputs are allowing the execution to get 
closer to the targets. In addition, since one would like to test all 
targets, it would be necessary to find out which testcases are 
progressing towards each particular target (as most probably, if 
targets are spread through the code, one will need to distinct 
inputs to reach the various parts). 

C. Keep the performance of fuzzing 

To address the previous challenge, one will require program 
instrumentation that collects more detailed information about 
which parts of a program are executed when processing an input. 
This instrumentation will introduce delays, decreasing the 
number of tests that can be performed per unit-of-time, and 
therefore, the performance of fuzzing. We expect, however, to 
offset these overheads by concentrating the instrumentation on 
the paths to the targets. This way we will eliminate these costs 
from all parts of the code that are irrelevant to get to the targets. 



 
Fig. 1. Architecture of the fuzzer. 

III. CURRENT DESIGN AND IMPLEMENTATION 

Our current design and implementation aim at testing large 
C/C++ applications (up to 1 million lines of code) for common 
bugs, such as memory management flaws. The prototype 
leverages the CLANG/LLVM compiler framework to collect 
information and instrument the programs. Various auxiliary 
tools are also being constructed, for example to recognize the 
lines that change among software releases and to create runtime 
feedback data. As a starting point for fuzzing support, we are 
using the AFL fuzzer, the most used open-source tool.  

Figure 1 represents the main components of our design. The 
fuzzing process is divided in two parts. A first one where the 
source code is analyzed and instrumented, and finally an 
executable is created. The second part where the actual fuzzing 
occurs. In more detail: 

a) Data collection: build a program analysis mechanism that 
produces an expressive graph representation augmented 
with the location of the targets. In C/C++, it is unfeasible to 
produce an exact graph as there are edges that may only be 
determined at runtime. Our aim is to be precise within these 
constraints, dealing appropriately with aspects like dynamic 
function pointers, indirect jumps, and inline statements. 

b) Data processing: implements an algorithm to reason over the 
graph, locating diverse paths and computing distances from 
the program entry points to the targets, which is scalable to 
many nodes and edges. We are exploring the concept of 
target clusters to decrease complexity, where targets near 
to each other are aggregated. Most computation is done 
during compilation (offline) to minimize runtime 
overheads. 

c) Produce executable: construct an instrumented software 
executable so that when it runs data is provided to the fuzzer 
about the parts of the code that are being reached. The 
instrumentation is only added to the paths towards the 
targets to make it highly efficient while still expressive 
enough.  

d) Fuzzing: the fuzzer runs the software under different 
testcases, while exploring feedback data to discover which 
inputs are moving towards the targets.  

The current prototype already implements the Instrumentation 
& Executable Generation, and currently we are developing the 
fuzzer. Once completed, we aim to test production-level 
software to assess its ability to discover relevant vulnerabilities. 
We will also compare our fuzzer with alternative solutions under 
various criteria, like number of targets found, progress in the 
direction of targets, and number of discovered vulnerabilities.  

IV. RELATED WORK 

Among previous research that aims at security testing 
specific parts of the code, symbolic execution [4] is the one that 
has been applied more prominently. Although significant 
improvements have been observed over recent years, symbolic 
execution still suffers from several drawbacks, such as the 
number of paths to be explored can explode. 

We are only aware of two fuzzers that attempt to reach a 
target, although with important limitations. AFLGO tries to steer 
the AFL fuzzer towards predefined program locations [5]. This 
is achieved by employing a simulated annealing heuristic to give 
extra energy to testcases that cause the execution to go near the 
selected locations, while reducing the energy of inputs that stay 
at a larger distance. Here, energy is related to the amount of time 
that is given for mutating a testcase into other inputs. One 
immediate downside of this approach is that it always favors a 
target for which it finds an input with the shortest distance, thus 
not dealing appropriately with multiple targets. Hawkeye tries to 
address this issue by keeping the testcases in a three-tiered queue 
[6]. Testcases in the top queues are given priority, namely those 
with smaller distances or that hit the targets. Although this 
solution is apparently better than AFLGO, it still suffers from 
many shortcomings. Examples are: (i) inputs that go through 
highly improbable path conditions are not identified, potentially 
preventing progress or causing a significant loss of effort; (ii) 
targets that may be hit through multiple paths are preferred at 
the cost of neglecting others; (iii) clusters of targets are ignored, 
thus constraining the scalability.  

ACKNOWLEDGMENT 

Work partially supported by FCT through project SEAL 
(PTDC/CCI-INF/29058/2017, LISBOA-01-0145-FEDER-
029058, POCI-01-0145-FEDER-029058) and LASIGE 
research unit (UIDB/00408/2020 & UIDP/00408/2020), and by 
the European ITEA3 through project XIVT (I3C4-
17039/FEDER-039238). 

REFERENCES 
[1] CVEDetails: Vulnerabilities By Year, 2021 [Online: last accessed March 

2022] https://www.cvedetails.com/browse-by-date.php  

[2] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, D. Wu, "SQUIRREL: 
Testing database management systems with language validity and 
coverage feedback", In Proc. of the ACM Conf. on Computer and 
Communications Security, pp. 955–970, 2020  

[3] A. Hazimeh,  A. Herrera,  M. Payer, "Magma: A ground-truth fuzzing 
benchmark", in Proc. of the ACM on Measurement and Analysis of 
Computing System, Vol. 4, No. 3, 2020  

[4] C. Cadar, K. Sen, "Symbolic execution for software testing: Three 
decades later", Communications ACM, vol. 56, No. 2, pp. 82–90, 2013 

[5] M. Böhme, V.-T. Pham, M.-D. Nguyen, A. Roychoudhury, "Directed 
greybox fuzzing", In Proc. of the ACM Conf. on Computer and 
Communications Security, pp. 2329–2344, 2017 



[6] H Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, Y. Liu, "Hawkeye: 
Towards a desired directed grey-box fuzzer", In Proc. of the ACM Conf. 
on Computer and Communications Security, pp. 2095–2108, 2018

 


