
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Towards Fuzzing Target Lines
Nuno Neves

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
nuno@di.fc.ul.pt

Abstract—Fuzzers are often considered one of the most
effective tools to uncover bugs in software, including security
vulnerabilities. Current tools are designed to test the full programs
by employing strategies that select and generate testcases that
increase code coverage. In this paper, we propose to evolve these
ideas to make fuzzers focus on specific portions (i.e., lines) of the
code, which we call targets, avoiding wasting resources on the
other regions. The aim is to support efficient testing of evolving
software, and other practical scenarios such as confirming the
results from static analysis.

Keywords—Testing, Target Fuzzing, Vulnerability Discovery

I. INTRODUCTION

Security vulnerabilities in software allow malicious actors to
subvert normal operation, often with dire consequences,
including loss of property and reputational damage. According
to Common Vulnerabilities and Exposures (CVE), the number
of new entries surpassed 55.000 over the period 2019-21 [1].
When organized by type, several of the most prominent classes
are associated with bugs usually found in software programmed
with the C/C++ languages, such as overflows, memory
corruptions, and arbitrary code execution. Moreover, C/C++ is
regularly the choice for critical application development, and
therefore, it is of utmost importance to expand the vulnerability
discovery capabilities in these languages.

Fuzzing is highly effective at checking complex codebases,
usually being able to discover flaws in programs previously
analyzed with other techniques. A coverage-guided fuzzer
operates in a conceptually straightforward manner, following an
approach akin to a genetic algorithm. The fuzzer executes
iteratively in a loop. It begins with a few user-supplied inputs (or
testcases), which are provided to the program under test in
independent executions. Feedback data is captured at runtime
allowing the fuzzer to recognize coverage-gaining inputs (e.g.,
additional statements/basic blocks are reached), which are
retained for the next phase. These inputs are also evolved
(various mutation and crossover strategies are applied) to
produce many offspring, and the loop starts over again with a
new generation of testcases. While running, the fuzzer searches
for program misbehaviour (e.g., out-of-bounds memory access)
as an indication that a bug was activated. The corresponding
input is then given to developers facilitate debugging activities.

Fuzzing is, however, extremely slow. For example, a recent
fuzzer took 60 days of testing to find a few tens of bugs in
databases [2]. A benchmark recently published showed that even
after spending over 200 000 CPU-hours, only 46% of the
injected vulnerabilities (54 in 118) were detected by a group of
7 state-of-the-art fuzzers [3]. These fuzzers operate by checking
the whole program, as the aim is to extend testing to as many

statements as possible. However, this is not appropriate if one
needs to test evolving software, which comes into play in many
practical scenarios, such as when a new release is created, when
a patch needs to be assessed, to verify reports from static
analysis tools, and to reproduce previously observed failures.
Here, fuzzing should focus on certain sections of the code, to
avert exhausting the available time for testing with superfluous
analyses.

Our goal is to design and implement a fuzzer that when given
a list of lines of code, which we call targets, focusses its energy
in reaching those lines with appropriate input testcases, and then
tests them (and the lines around) exhaustively.

II. CHALLENGES

A. Diversity of scenarios

Depending on the testing scenario, the targets can appear in
the code in very different manners. For example, they can form
a cluster of statements (e.g., a function was changed and needs
to be tested) or they can be spread over various files of the
program; they can be composed by a small group of instructions
(e.g., a patch or a particular line identified by static analysis) or
can correspond to tens of thousands of lines of code (e.g.,
checking modifications before a new release). Independently,
the goal is to efficiently find inputs that can reach the targets, so
that they can be evolved by the fuzzer, to check those lines with
many combinations of values, eventually triggering a bug.

B. Determining if inputs are progressing towards targets

Existing coverage-guided fuzzers employ highly optimized
data structures to identify inputs that lead to novel program
coverage. The ability to perform this selection is of fundamental
value because it allows the fuzzer to distinguish inputs that are
worthy to continue mutating. These data structures are, however,
unable to determine if inputs are allowing the execution to get
closer to the targets. In addition, since one would like to test all
targets, it would be necessary to find out which testcases are
progressing towards each particular target (as most probably, if
targets are spread through the code, one will need to distinct
inputs to reach the various parts).

C. Keep the performance of fuzzing

To address the previous challenge, one will require program
instrumentation that collects more detailed information about
which parts of a program are executed when processing an input.
This instrumentation will introduce delays, decreasing the
number of tests that can be performed per unit-of-time, and
therefore, the performance of fuzzing. We expect, however, to
offset these overheads by concentrating the instrumentation on
the paths to the targets. This way we will eliminate these costs
from all parts of the code that are irrelevant to get to the targets.

Fig. 1. Architecture of the fuzzer.

III. CURRENT DESIGN AND IMPLEMENTATION

Our current design and implementation aim at testing large
C/C++ applications (up to 1 million lines of code) for common
bugs, such as memory management flaws. The prototype
leverages the CLANG/LLVM compiler framework to collect
information and instrument the programs. Various auxiliary
tools are also being constructed, for example to recognize the
lines that change among software releases and to create runtime
feedback data. As a starting point for fuzzing support, we are
using the AFL fuzzer, the most used open-source tool.

Figure 1 represents the main components of our design. The
fuzzing process is divided in two parts. A first one where the
source code is analyzed and instrumented, and finally an
executable is created. The second part where the actual fuzzing
occurs. In more detail:

a) Data collection: build a program analysis mechanism that
produces an expressive graph representation augmented
with the location of the targets. In C/C++, it is unfeasible to
produce an exact graph as there are edges that may only be
determined at runtime. Our aim is to be precise within these
constraints, dealing appropriately with aspects like dynamic
function pointers, indirect jumps, and inline statements.

b) Data processing: implements an algorithm to reason over the
graph, locating diverse paths and computing distances from
the program entry points to the targets, which is scalable to
many nodes and edges. We are exploring the concept of
target clusters to decrease complexity, where targets near
to each other are aggregated. Most computation is done
during compilation (offline) to minimize runtime
overheads.

c) Produce executable: construct an instrumented software
executable so that when it runs data is provided to the fuzzer
about the parts of the code that are being reached. The
instrumentation is only added to the paths towards the
targets to make it highly efficient while still expressive
enough.

d) Fuzzing: the fuzzer runs the software under different
testcases, while exploring feedback data to discover which
inputs are moving towards the targets.

The current prototype already implements the Instrumentation
& Executable Generation, and currently we are developing the
fuzzer. Once completed, we aim to test production-level
software to assess its ability to discover relevant vulnerabilities.
We will also compare our fuzzer with alternative solutions under
various criteria, like number of targets found, progress in the
direction of targets, and number of discovered vulnerabilities.

IV. RELATED WORK

Among previous research that aims at security testing
specific parts of the code, symbolic execution [4] is the one that
has been applied more prominently. Although significant
improvements have been observed over recent years, symbolic
execution still suffers from several drawbacks, such as the
number of paths to be explored can explode.

We are only aware of two fuzzers that attempt to reach a
target, although with important limitations. AFLGO tries to steer
the AFL fuzzer towards predefined program locations [5]. This
is achieved by employing a simulated annealing heuristic to give
extra energy to testcases that cause the execution to go near the
selected locations, while reducing the energy of inputs that stay
at a larger distance. Here, energy is related to the amount of time
that is given for mutating a testcase into other inputs. One
immediate downside of this approach is that it always favors a
target for which it finds an input with the shortest distance, thus
not dealing appropriately with multiple targets. Hawkeye tries to
address this issue by keeping the testcases in a three-tiered queue
[6]. Testcases in the top queues are given priority, namely those
with smaller distances or that hit the targets. Although this
solution is apparently better than AFLGO, it still suffers from
many shortcomings. Examples are: (i) inputs that go through
highly improbable path conditions are not identified, potentially
preventing progress or causing a significant loss of effort; (ii)
targets that may be hit through multiple paths are preferred at
the cost of neglecting others; (iii) clusters of targets are ignored,
thus constraining the scalability.

ACKNOWLEDGMENT

Work partially supported by FCT through project SEAL
(PTDC/CCI-INF/29058/2017, LISBOA-01-0145-FEDER-
029058, POCI-01-0145-FEDER-029058) and LASIGE
research unit (UIDB/00408/2020 & UIDP/00408/2020), and by
the European ITEA3 through project XIVT (I3C4-
17039/FEDER-039238).

REFERENCES
[1] CVEDetails: Vulnerabilities By Year, 2021 [Online: last accessed March

2022] https://www.cvedetails.com/browse-by-date.php

[2] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, D. Wu, "SQUIRREL:
Testing database management systems with language validity and
coverage feedback", In Proc. of the ACM Conf. on Computer and
Communications Security, pp. 955–970, 2020

[3] A. Hazimeh, A. Herrera, M. Payer, "Magma: A ground-truth fuzzing
benchmark", in Proc. of the ACM on Measurement and Analysis of
Computing System, Vol. 4, No. 3, 2020

[4] C. Cadar, K. Sen, "Symbolic execution for software testing: Three
decades later", Communications ACM, vol. 56, No. 2, pp. 82–90, 2013

[5] M. Böhme, V.-T. Pham, M.-D. Nguyen, A. Roychoudhury, "Directed
greybox fuzzing", In Proc. of the ACM Conf. on Computer and
Communications Security, pp. 2329–2344, 2017

[6] H Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, Y. Liu, "Hawkeye:
Towards a desired directed grey-box fuzzer", In Proc. of the ACM Conf.
on Computer and Communications Security, pp. 2095–2108, 2018

