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I. INTRODUCTION

The use of software daily has become inevitable nowadays.
Almost all everyday tools and the most different areas (e.g.,
medicine or telecommunications) are dependent on software.
The C programming language is one of the most used lan-
guages for software development, such as operating systems,
drivers, embedded systems, and industrial products. Even with
the appearance of new languages, it remains one of the most
used [1]. At the same time, C lacks verification mechanisms,
like array boundaries, leaving the entire responsibility to
the developer for the correct management of memory and
resources. These weaknesses are at the root of buffer overflows
(BO) vulnerabilities, which range the first place in the CWE’s
top 25 of the most dangerous weaknesses [2]. The exploitation
of BO when existing in critical safety systems, such as
railways and autonomous cars, can have catastrophic effects
for manufacturers or endanger human lives.

There have had different techniques to detect vulnerabilities,
but fuzzing is the most used for its ability to exploit them [3]
[4] [5]. However, fuzzing does not give information about them
on the code, putting this task on the programmers’ side, which
can be challenging for those who do not know about security
programming. White box fuzzers [6] [7], the combination
of them with fuzzing [8] [9], and recently machine learning
approaches [10] [11] have been proposed to identify bugs in
the code, but they suffer from imprecision, putting once again
the effort of checking their output veracity on developer’s
side. Hence, it is necessary to find ways to automatically
detect flaws and remove them by employing more security
programming to be helpful for developers. There are some
approaches to automatic program repair (APR) for C programs
[12] [13]; however, most of them are not for security and the
existing ones do not verify the correctness of the fixed code,
which can leave the programs syntactically incorrect.

This work introduces an approach for automatically de-
tecting and correcting flaws in C programs. The goal is to
provide a pipeline of small modules and tools to discover BOs
statically, confirm their presence by fuzzing and remove the
vulnerabilities by repairing the code and testing the correc-
tions’ effectiveness.

II. DISCOVERING AND FIXING BO APPROACH

We present an approach that identifies and fixes BOs
vulnerabilities in the source code of C programs and verifies
the effectiveness and correctness of the corrected (fixed)
code in an automated manner. The approach has the goal
of managing the following challenges: (1) how to find and

remove vulnerabilities; (2) what is the right secure code
needed to remove them; (3) where to insert this code; (4)
how to keep the correct behaviour of the application, after
applying the code correction. Our approach addresses these
challenges by employing static analysis to find diverse types
of BO vulnerabilities, attack injection to confirm the BO found
and validate the effectiveness of the code fixed, and fixes to
correct the code automatically with fix templates generated
dynamically.

Figure 1 illustrates an overview of the approach architecture
with the four modules it comprises, which we present next.

1) BO Finder. This module is responsible for identifying
possible candidate vulnerabilities in the code of the
received program. It uses static analysis techniques to
collect information about potential vulnerabilities and
their location in the program, namely the respective line
number in the file. It uses this information to generate
slices of the vulnerable code that start at an entry point
and end at a sensitive sink.

2) Executable Generator. This module generates an ex-
ecutable file for each slice that contains a candidate
vulnerability found by the BO Finder. For that, it updates
each slice with other instructions needed, from the
program files, to obtain a file that can be compiled.
Then, the compiled code is instrumented, generating an
executable that is forwarded to the Validator.

3) Validator. The Validator uses fuzzing techniques for
validating the code received from the Executable Gen-
erator in two distinct phases. In one phase, it confirms
whether the candidate vulnerabilities provided by the
finder are real, executing attacks that try to exploit
them and generating thus the exploits for them. Those
vulnerabilities it cannot exploit are marked as possible
false positives (FP). The remaining ones, i.e., the ex-
ploitable vulnerabilities, are signalled as such, and their
exploits are stored for the second phase. The second
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Fig. 1. Overview of the approach architecture.



phase uses the previously generated exploits to verify if
the fixes applied are effective and safe. Also, it mutates
the exploits to check if there are new exploits that can
break the fixes and that the application does not hang.

4) Code Corrector. This module analyzes the received code
from the Validator (first phase), identifies the existing
sensitive sinks (e.g., strcpy), and determines the variable
sizes of the arguments of the sinks. Next, it checks for
the possibility of BOs through the size of the variables
used in the sensitive sinks. If it verifies that such
vulnerabilities exist, it uses the fix template indicated for
that sensitive sink, creates a fix and applies it to the code.
Also, it detects whether the code signalled as possible
FP or exploitable vulnerabilities were correctly tagged,
reporting the former as FP and proceeding with code
corrections for the latter. In addition, the corrected code
is forwarded to the Executable Generator to produce its
executable and then to the Validator to proceed with
the second phase of validation. In this validation phase,
if the code is found to be correct, a new release of
the program is produced, with its files containing the
corrected code, i.e., with the vulnerabilities fixed and
corrections validated.

We are currently developing a prototype of our approach.
The first three modules are already implemented. We resorted
to Flawfinder [14], and AFL [15] to implement the first and
third modules. Also, we used the pycparser [16] to implement
the slice extractor in BO Finder and the third module to
parse the program under testing and extract the other code
instructions needed to compose a program to be compiled.
Also, the interactions between the modules and the correlation
of their results were implemented by us in Python. The fourth
module is under development, including the fixes templates.

III. PRELIMINARY RESULTS

The objective of the experimental evaluation was to answer
the following questions: (1) Can the tool discover potential
vulnerabilities and generate their executable slices correctly?
(2) Can the tool process the executable slices and exploit the
possible vulnerabilities they contain?

We evaluated the tool with 1075 excerpts of C code taken
from SARD [17], containing diverse functions related to
BOs (e.g., strcpy, gets, strcat), and which 560 of them are
vulnerable and 515 are not vulnerable. All the excerpts contain
more than one data execution flow.

The BO Finder processed all excerpts, and every BO’s
function they contained was flagged as a possible vulnerability
and created 1075 slices for each of them. This means that the
515 not vulnerable excerpts were flagged as possible BOs.
We recall that this module is based on Flawfinder, which hits
every function it is programmed to discover. Even though this
behaviour denotes a high rate of FP, our goal is to check that
all sensitive functions are caught and invalidate this result
of FPs in the second module. For all slices extracted, we
manually verified that they were correctly identified. Note that,
Flawfinder only outputs the line of the code of the suspicious

function that can cause a BO. So, the slice extractor has the
work to extract all lines of code that go from that function
until an entry point.

The Executable Generator processed the slices and correctly
generated their executables, and the Validator module proved
this as it could run all of them. The Validator received 1075
executable files and only exploited 560 of them, i.e., the real
vulnerable ones, meaning that it was able to invalidate the FPs.

Besides the Code Corrector not yet completed, it was al-
ready capable of correcting more than 50% of the 560 excerpts,
and we verified that the corrections made were effective.

The preliminary results showed that it is beneficial in having
a pipeline for finding BOs, confirming and correcting them,
and testing the new code, which can be helpful for developers.
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