
Effect of Coding Styles in Detection of Web
Application Vulnerabilities

Ibéria Medeiros, Nuno Neves
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

imedeiros@di.fc.ul.pt, nuno@di.fc.ul.pt

Abstract—Web application security has become paramount for
the organisation’s operation, and therefore, static analysis tools
(SAT) for vulnerability detection have been widely researched in
the last years. Nevertheless, SATs often generate errors (false
positives & negatives), whose cause is recurrently associated
with very diverse coding styles, i.e., similar functionality is
implemented in distinct manners, and programming practices
that create ambiguity, such as the reuse and share of variables.
The paper presents an analysis of SAT’s behaviour and results
when they process various relevant web applications coded with
different coding styles. Furthermore, it discusses if the SQL
injection vulnerabilities detected by SATs as true positives are
really exploitable. Our results demonstrate that SATs are built
having in mind how to detect specific vulnerabilities, without
considering such forms of programming. They call to action for
a new generation of SATs that are highly malleable to be capable
of processing the codes observed in the wild.

Index Terms—Web application vulnerabilities, static analysis
tools, coding styles, SQLi exploitation, software security.

I. INTRODUCTION

Web applications have become an essential resource for
accessing services on a variety of subjects (e.g., financial,
healthcare) available on the Internet. As their use and appli-
cability in different contexts have increased, it is a priority
for organisations to ensure their security against cyber attacks
and protect the data they handle. However, despite the efforts
that have been made in the security of web applications,
specifically on researching of better techniques to identify
vulnerabilities in its source code, the number of vulnerabilities
exploited has not decreased [1]. For example, the SQL injec-
tion (SQLi) vulnerability appears on top of them, representing
two-thirds (65%) of cyber attacks of all web attacks [2].

Nowadays, developers use open-source and re-usable (third-
party) components in their applications to accelerate their
development. Such practice is justified by the easy way of
finding code available on the Internet that implements a
given software functionality and the constant pressure to be
the first to put in the market new and innovative software
solutions. However, third-party components have introduced
and propagated vulnerabilities in software development [3],
and so they can be seen as a mean to increase the number
of vulnerabilities. In addition to these flaws, developers them-
selves can leave the code vulnerable, as they may not have
sufficient knowledge about how to write secure code [4].

In light of these facts, static analysis tools (SATs) are the
frequently and preferred resources used by organisations to test
the security of their applications, as they search and identify

vulnerabilities in their source code. Moreover, the outcomes
provided by them can help developers to correct the code [5].

For web applications, for example, there are SATs that
detect specifically SQLi and cross-site scripting (XSS) vulner-
abilities [6][7], as these two vulnerability classes are the ones
most exploited and range the OWASP Top 10 [8], and others
detect a few more classes of vulnerabilities [9][10]. However,
the conducted investigation made over SATs pinpointed they
often generate errors (false positives & negatives, FP & FN),
whose cause is recurrently associated with diverse coding
styles employed by developers, i.e., similar functionality is
implemented in distinct manners, and programming practices
that create ambiguity, such as the reuse and share of variables.

The paper presents an analysis of SAT’s behaviours in the
detection of vulnerabilities when they process applications that
were coded considering different coding styles and practices,
that we call coding style scenarios. To the effect, we tested
three open-source SATs (phpSAFE, RIPS and WAP) with a
use case coded in six scenarios, and analysed their behaviours
to understand why they produce FP and FN and in which
scenarios they behave correctly. The use case is based on
multiple forms contained in a same webpage and their inputs
received and processed by a same server-side file. Multiple
forms have been a practice used in current websites (e.g., Face-
book1, Elsevier2), for login and register a user, for example,
and the code that supports and processes them is usually in
a single file. The variables used to process the data provided
by the forms are the same, as only one form is processed at
a time. The paper also presents a discussion of whether the
SQLi vulnerabilities detected by SATs as true positives are
really exploitable.

Our results demonstrated that SATs are built having in mind
how to detect specific vulnerabilities, without considering such
forms of programming. Moreover, these forms underlie the
SATs errors and, as far as we know, their impact on SATs
has never been studied. Such results call to action for a new
generation of SATs that are highly malleable to be capable of
processing the codes observed in the wild.

The contributions of the paper are: (1) the insights from the
behaviours of SATs when they analyze applications written
with different coding styles and programming practices; (2)

1https://www.facebook.com/
2https://checkout.elsevier.com/auth

1

a discussion about the exploitability of SQLi vulnerabilities
detected by SATs as true positives.

II. CONTEXT AND RELATED WORK

A. Vulnerabilities and False Positives and Negatives

The most well-known and exploitable web vulnerabilities
are those related to user inputs, which, if their contents are
not sanitised or validated before being used in any function
sensitive to them, unexpected outcomes and application’s
behaviours can occur. This class of vulnerabilities is known by
input validation or surface because inputs suffer of sanitisation
before being used and they are inserted in the web application
through its (attack) surface, e.g., HTML forms. The entries
of the application surface are known as entry points and the
functions that can be exploitable with malicious contents from
user inputs are called sensitive sinks, or simply sinks.

SQLi is one of this kind of vulnerability. It is associated
with malcrafted user inputs (e.g., ’, OR) that are inserted in
SQL statements without any sanitisation and used in a sink that
sends them to be executed in the database. Listing 2, lines 9–
12, shows an example of a SQLi. The goal of this code is to
verify if a user exists in the database, after providing its login
credentials – email address and password. The credentials are
received through the $ GET entry points (lines 9 and 10), used
in line 11 to compose the SQL query, and sent to the database
by the mysqli query sink (line 12).

Based on the concepts of entry point and sink, a vulnera-
bility is generally defined as being a set of entry points (one
or more) used in a sensitive sink, without first being sanitised.
More strictly and without considering input sanitisation, we
can define a vulnerability as follows:
• Vul-C1: a same set of entry points that reaches a same

sink, meaning that a sensitive sink only receives a set of
entry points. The example above fits in this definition.
That sink only receives those entry points.

• Vul-C2: distinct sets of entry points that reach a same
sink, meaning that a sensitive sink receives different
(distinct) sets of entry points from different places of the
application. Considering the code of Listing 2, lines {9–
11, 38} and lines {17–19, 29, 38} are examples of this
category, where the sink of line 38 receives two sets of
entry points from different places.

The first definition is the most usual; however, we are more
interested in cases that fit the second definition since they can
be in the root of false positives and negatives.

For the other hand, generically a false positive is defined as
being a vulnerability flagged by a tool wrongly. More strictly,
we can envisage three definitions for false positives, namely:
• FP-C1: a real execution path that starts in entry points

and ends in a sink, where one or more entry points
are modified by string manipulation operations (e.g.,
extract substring) or validated (e.g., type checking) before
reaching the sink. In the example above, if was used in
query of line 11, the firsts characters of the email (line
9) which were extracted by function substr.

• FP-C2: a real execution path, from one or more entry
points until a sink, that for some reason the analysis made
by the tool was not correct. For example, if a developer
codes his/her sanitization functions (e.g., implements a
blacklist function), a SAT will not consider them in the
analysis, if it is not configured for them. Hence, the tool
will output an existent (real) execution path containing
such functions as being a vulnerability.

• FP-C3: a false execution path, from an entry point to a
sink, that for some reason the analysis made by the tool
was not correct. Due ambiguity of different coding styles
and programming practices, the tool does not interpret
them correctly, outputting nonexistent (false) execution
paths as being vulnerabilities. In Listing 2, lines {17–19,
29, 49} is an example of this type, where is not possible
to reach line 49 if the code was executed.

FP-C1 and FP-C2 were already investigated by Medeiros
et. al. [10]. Also, FP-C2 can be handled by configuring the
tools with sanitisation functions developed by programmers.
We are more interested in the FP-C3 case since it is the case
that needs to be studied to understand why SATs produce them
and give some insights on how to avoid them.

Lastly, for false negatives, we can define them as undetected
execution paths for the same reasons as the third case of false
positives. We are also interested in understanding this case.

B. Vulnerability Detection through Static Analysis

Static analysis is one of the most used techniques to detect
vulnerabilities in source code. The technique requires access
to the source code but can normally be performed without
having a running version of the application. One common
issue with static analysis tools is that they are forced to
make approximations in many cases which may lead to false
positives (e.g., it is impossible to statically determine the
outcome of a conditional statement). Taint analysis is a kind
of static analysis that is used in detection of vulnerabilities.
It tracks the users inputs and verifies if they are used in a
sensitive sink. Several tools implement this technique, having
achieved promising results [6][7][9][10] and even offering
functionalities such as automatic code correction [10][4][11].

In order to increase the precision of SATs, [12][13][14]
combined SATs, and others explored their outputs through
machine learning algorithms [15][16]. However, none of them
explain why some SATs are better than others in certain cases
and indicate which are the causes of this. WAP [10][4][11]
also classifies such alerts as being FPs or not by using data
mining. Although WAP minimizes FPs, it only pinpoints
false positives of FP-C1 and FP-C2, which are related to
the presence of functions that sanitize, validate or modify
inputs along an execution path; not to coding styles. Another
set of works leverage from software metrics to improve the
precision of vulnerability detection and the trustworthiness
of software systems [17][18]. Medeiros et al. [19] leverages
natural language processing (NLP) to classify slices statically
but taking into account the order in which the code elements
appear in the slice.

2

III. USE CASE AND SCENARIOS

A. Multiple Forms Use Case

The use case we chose involves the reuse and share vari-
ables, a common programming practice used by developers
to (re)use the same memory space on some parts of the
program since they know that some variables will not be
used from a given point of the program. Therefore, they can
(re)use its memory space (by (re)using the variable name) to
allocate other content which will be affected by other program
functionality. To illustrate this, the use case we present is the
use of multiple forms in a single webpage.

Multiple forms have been a practice adopted in current
websites, usually for login or register a user (e.g., Facebook3),
but they are not limited to this. Although they can be built with
different and stylized manners, such as modal or tabulator
window (e.g., IEEE Xplore4, for institutional sign in, and
ForumEngine5), or even by the typical way (e.g., Elsevier6),
the HTML code that supports them is always the same, i.e.,
multiple form elements for representing the different forms,
each one containing input elements (e.g., buttons, input box,
check box) for designing the various pieces of the form.

Another aspect that is common to multiple forms is that
the server-side code (e.g., PHP) that receives and processes
them is usually in the same file. Moreover, since only a
form can be processed at a time, developers use the same
variables to receive the user data provided through the forms,
and some parts of the code are common to both. Besides these
practices, which are not incorrect and allow to reduce the
system resources used, the way that they are coded can differ
between developers, but for the same purpose.

Figure 1 shows an example of multiple forms for logging or
registering a user, illustrating its input elements, and Listing
1 presents the HTML code that supports them. To facilitate
the read of the HTML, we only present the necessary code to
characterize the use case.

Both forms have in common the E-mail Address and
Password input elements, named email and email_pass
(lines 3 and 5, and 13 and 15 in Listing 1), and, therefore,
they have in common the entry points $_GET["email"]
and $_GET["email_pass"]. In addition, the PHP file
LogReg.php, specified in the action attribute on both
forms (lines 1 and 9), will process the data provided by them.
Each form has a button to submit the data (lines 6 and 18),
which will allow to distinguish each form in the PHP file –
$_GET["login"] and $_GET["register"] for login
and register forms, respectively.

Listing 2 presents the PHP code of LogReg.php, which
contains the code for user login and user register operations.
In the code, variables $email and $pw are the ones that
will receive the common entry points we referred above.
Therefore, they are the common variables in both forms but

3https://www.facebook.com/
4https://ieeexplore.ieee.org/Xplore/home.jsp
5https://forumengine.enginethemes.com/
6https://checkout.elsevier.com/auth

Fig. 1. Login and register user forms in a same webpage.

are processed separately, i.e., in distinct contexts (login or
register). In addition, the $sql and $res variables will be
(re)used along the file to compose SQL queries and get their
results after their executions in the database. Nevertheless, the
code contains three SQLi vulnerabilities, one in the user login
and two in the user registration, which are presented for each
scenario in Table I (see next section).

1 <form name="flogin" method="get" action="LogReg.php">
2 <label for="email">E-mail Address</label>
3 <input id="email" type="email" name="email" value="">
4 <label for="email_pass">Password</label>
5 <input id="email_pass" type="password"

name="email_pass" value="">
6 <input type="submit" name="login" value="Login">
7 </form>
8
9 <form name="fregister" method="get" action="LogReg.php">

10 <label for="name">Name</label>
11 <input id="name" type="text" name="name" value="">
12 <label for="email">E-mail Address</label>
13 <input id="email" type="email" name="email" value="">
14 <label for="email_pass">Password</label>
15 <input id="email_pass" type="password"

name="email_pass" value="">
16 <label for="email_pass_conf">Confirm Password</label>
17 <input id="email_pass_conf" type="password"

name="email_pass_conf" value="">
18 <input type="submit" name="register" value="Register">
19 </form>

Listing 1. HTML code to generate the forms of Figure 1.

B. Coding Style Scenarios

Based on the code of the Listing 2 we derived six coding
style scenarios for processing the data provided from login
and register forms. In order to define these scenarios, first
we defined different code blocks – cb – that could process
the data and follow the programming practices described in
the previous section, and then we built the scenarios. Some
of these scenarios are the most employed by programmers,
and others are not so viewed, but used. The definition of cb
involves the definition of common cb to receive the user inputs
common to both forms and to execute a query composed of
another cb, and cb for each specific operation but containing
variables that are (re)used throughout them.

Figure 2 illustrates the scenarios with their code blocks,
specifying for each the numbers of the lines of code (between
braces) that compose them. For all, the HTML code of the
forms is equal (grey blocks). Specific cb for login operation
are green, whereas cb for register operation are blue. Common
cb (orange) are those that are common in processing of
both forms. The cb on light green is the code of the login

3

operation split on two cb (P1 and P2). Analyzing the code
of Listing 2, the first scenario (SC-1) is active. To activate
the other scenarios, it is necessary to activate their lines, by
uncommenting some lines and commenting others. Finally, the
notation {Lx− Ly} \ {Lz} means that the cb is defined by
the {Lx− Ly} range of lines of code, except the Lz line.

1 <?php
2
3 // common variables to both forms.
4 //$email = $_GET["email"];
5 //$pw = $_GET["email_pass"];
6
7 // code to process the login form
8 if (isset($_GET["login"])) {
9 $email = $_GET["email"];

10 $pw = $_GET["email_pass"];
11 $sql= "SELECT * FROM users WHERE addr =’".$email."’

AND addr_pass =’".$pw."’";
12 $res = mysqli_query($con, $sql);
13 }
14
15 // code to process the register form
16 if (isset($_GET["register"])) {
17 $name = $_GET["name"];
18 $email = $_GET["email"];
19 $pw = $_GET["email_pass"];
20 $pw_conf = $_GET["email_pass_conf"];
21
22 $sql= "SELECT * FROM users WHERE addr =’".$email."’";
23 $res = mysqli_query($con, $sql);
24
25 if (mysqli_num_rows($res) != 0)
26 echo "This user already exist";
27 else{
28 if ($pw === $pw_conf){
29 $sql = "INSERT INTO users (’name’, ’email’,

’password’) VALUES (’".$name."’,
’".$email."’, ’".$pw."’)";

30 $res = mysqli_query($con, $sql);
31 }
32 else
33 echo "Passwords do not match";
34 }
35 }
36
37 // code to process the final query of both forms
38 //$res = mysqli_query($con, $sql);
39
40 // code to process the login form
41 //if (isset($_GET["login"])) {
42 // $email = $_GET["email"];
43 // $pw = $_GET["email_pass"];
44 // $sql= "SELECT * FROM users WHERE addr =’".$email."’

AND addr_pass =’".$pw."’";
45 //}
46
47 // differentiated code to be processed by each form
48 if (isset($_GET["login"])) {
49 //$res = mysqli_query($con, $sql);
50 if (mysqli_num_rows($res) == 1)
51 echo "Login successful"
52 }
53 else
54 if ($res === TRUE)
55 echo "User registered with success"
56 ?>

Listing 2. PHP code for processing the forms of Fig. 1.

For example, the composition of the second scenario (SC-
2) is read as follows: a common cb which is executed for
both operations to receive entry points, a cb that is only
executed for login operation, and a cb that is only executed
for register operation. To enable this scenario, its lines must
be uncommented and the remaing lines commented.

Table I describes each scenario, in the first two columns.

FL HTML

FR HTML

FL code
{L7 - L13}

FR code
{L15 - L35}

SC-1 SC-2

Common
{L3 - L5}

SC-3

FL HTML

FR HTML

FL HTML

FR HTML

FL HTML

FR HTML

FL HTML

FR HTML

FL HTML

FR HTML

SC-4 SC-5 SC-6

FL code
{L7 - L13}
\ {L9, 10}

FR code
{L15 - L35}
\ {L18, L19}

Common
{L37 - L38}

FL code
{L7 - L13}

\ {L12}

FR code
{L15 - L35}

\ {L30}

Common
{L3 - L5}

FL code
{L7 - L13}

\ {L9, L10, L12}

FR code
{L15 - L35 }
\ {L18, L19, L30}

Common
{L37 - L38}

FR code
{L15 - L35}

FL code - P1
{L40 - L45}

FL code - P2
{L47 - L52}

FL code - P1
{L7 - L13}

\ {L12}

FR code
{L15 - L35}

FL code - P2
{L47 - L52}

FL HTML

FR HTML

FL code
{L7 - L13}

FR code
{L15 - L35}

SC-7

Differentiate
{L47 - L55}

\ {L49}

Fig. 2. Considered scenarios to process multiple forms on a single PHP file.

As we stated before, the code contains three vulnerabilities
(one in the user login and two in the user registration), and
depending on the scenario, they can be from Vul-C1 or Vul-C2
(see Section II-A). The last two columns present the execution
path of each vulnerability (i.e., the code lines that handle entry
points and their dependencies, and a sink) and the vulnerability
case it fits. As a final note, both Fig. 2 and Table I show a
seventh scenario which will be discussed in Section IV-C.

IV. ANALYSIS OF SAT’S BEHAVIOURS AND DETECTION

This section presents the analysis of SAT’s behaviours
and detection when they analyse the use case over the six
coding style scenarios. However, before presenting it, first, it
gives an overview of the SATs we used. The section ends
presenting a discussion about if the SQLi cases detected by
SATs as true positives are indeed exploitable, i.e., if those
SQLi vulnerabilities represent a real danger.

A. Static Analysis Tools

To assess ours coding style scenarios, we selected three
open-source PHP SATs that employ taint analysis to find SQLi
vulnerabilities, namely phpSAFE [7], RIPS [9] and WAP [10].

RIPS is the oldest of them and the most cited in the
literature, but its open-source version does not analyse object-
oriented programming (OOP) code. phpSAFE and WAP are
more recent tools which can analyse OOP code, and both also
analyse WordPress plugins, besides of web applications. WAP
comprises a module to predict false positives (FP-C1 and FP-
C2, Section II-A) and another to remove the vulnerabilities it
founds, by inserting functions that sanitise the entry points.

An important aspect about SATs, specifically those that
employ taint analysis, is that, before performing the analysis
of the language for what they were programmed, they remove
any other languages contained in files of the target application.
For example, for a PHP web application that its files contain
HTML and Javascript (besides PHP), PHP SATs will remove
these codes first, and then will perform the PHP analysis. This
means that SATs are agnostic of the client-side context from
which inputs are provided. Therefore, they track all application
entry points at the same time, regardless of the client-side
context. Another feature is that, for performing the analysis of
a given instruction and propagating the variable taintedness,
they take into account the last assignment of that variable. For

4

TABLE I
CODING STYLE SCENARIOS OF THE USE CASE AND DEFINED FROM THE LISTING 2.

SC Description Vul-C1 Vul-C2

SC-1
The code of each operation (login and register) is clearly delimited, without
having common code that serves both operations. All three vulnerabilities
are from Vul-C1.

{L9, L10, L11, L12}
{L18, L22, L23}
{L17, L18, L19, L29, L30}

SC-2
There is a common cb for receiving the common entry points and assign
them to $email and $pw variables. The remaining code is specific and clearly
delimited for each operation. All three vulnerabilities are from Vul-C1.

{L4, L5, L11, L12}
{L4, L22, L23}
{L4, L5, L17, L29, L30}

SC-3
The code of each operation is well delimited. However, there is a common cb
for processing the final query of both operations. One vulnerability is from
Vul-C1, whereas the other two are from Vul-C2.

{L18, L22, L23} {L9, L10, L11, L38}
{L17, L18, L19, L29, L38}

SC-4

There are two common cb, one for receiving the entry points and other for
processing the final query for both operations. Between them, there are two cb
containing the specific code for each operation. One vulnerability is from Vul-C1,
whereas the other two are from Vul-C2.

{L4, L22, L23} {L4, L5, L11, L38}
{L4, L5, L17, L29, L38}

SC-5
The code of each operation (login and register) is clearly delimited. However,
the cb of the login operation is split on two cb, but they are executed
sequentially. All three vulnerabilities are from Vul-C1.

{L18, L22, L23}
{L17, L18, L19, L29, L30}
{L42, L43, L44, L49}

SC-6
The code of each operation is clearly delimited. However, the cb of the login
operation is split on two cb, but they are intercalated by the cb of the register
operation. All three vulnerabilities are from Vul-C1.

{L9, L10, L11, L49}
{L17, L18, L19, L29, L30}
{L18, L22, L23}

SC-7 Scenario equal to SC-1, but has one more cb containing different code for
each operation (purple cb on Figure 2). All three vulnerabilities are from Vul-C1.

{L9, L10, L11, L12}
{L18, L22, L23}
{L17, L18, L19, L29, L30}

Vul-C1: Vulnerability of Case 1; Vul-C2: Vulnerability of Case 2 both defined in Section II-A

example, supposing that the variable x has two assignments
in lines 10 and 12 and it is used in an expression on line 15,
the analysis will consider the assignment of line 12.

B. SAT’s Behaviours and Detection

We run the three tools over the six scenarios and we anal-
ysed their outcomes intending to understand their behaviours
and check the veracity of their results. All SATs had the same
results and behaviours. Table II, columns 4 to 7, presents
such results for the vulnerabilities contained in each scenario
(columns 1 to 3). As expected, none SAT generated any false
positive of FP-C1 and FP-C2 (column FP in the table) once
the code does not contain functions related to these cases (e.g.,
sanitisation). Next, we detail the analysis of the behaviours of
the tools by scenario.

a) Scenarios SC-1 and SC-2: For these scenarios, the
tools correctly detected all vulnerabilities. The fact of the code
of each operation is well delimited on both scenarios justifies
these results. Although SC-2 has a common cb, containing
the shared entry point instructions for both login and register
operations, it does not affect the SAT’s behaviour since the
variables $email and $pw that receive such entry points are
not changed (reassigned) along the cb of each operation.
Another aspect that contributed for these results is the fact
of all vulnerabilities are from Vul-C1, meaning that each sink
only receives a distinct set of entry points, which one belongs
to an operation. So the probability of SATs can incur in a
wrong analysis is minor. These reasons make that the multiple
forms case programmed with these coding styles do not affect
the SAT’s behaviour, and so SATs can continue agnostic to
the client-side context.

b) Scenarios SC-3 and SC-4: All tools correctly detected
two vulnerabilities and had a false negative. Both scenarios

include common blocks. SC-4 has the same common cb as
SC-2, which, as we already stated, it does not interfere in the
SAT’s analysis since the involved variables are not reassigned
along with the code. On the other hand, the common cb that
ends both scenarios affects the analysis performed by tools.
This cb contains a sink to execute the queries built in the
above cb and the (re)used $res variable that receives the
result of the sink execution. Moreover, because of this common
sink (L38), two vulnerabilities are from Vul-C2, meaning that
two distinct entry points sets reach that sink (one of each
operation). Also, the $sql variable is used in both operations.

Since only one operation is expected to be executed, the
programmer’s decision of making these variables and sink
equals for both operation is correct, however, SATs do not

TABLE II
RESULTS OF SATS OVER THE SIX CODING STYLE SCENARIOS.

SC Vulnerability Case TP FN FP FFP

SC-1
{L9, L10, L11, L12}
{L18, L22, L23}
{L17, L18, L19, L29, L30}

Vul-C1
Vul-C1
Vul-C1

1
1
1

SC-2
{L4, L5, L11, L12}
{L4, L22, L23}
{L4, L5, L17, L29, L30}

Vul-C1
Vul-C1
Vul-C1

1
1
1

SC-3
{L18, L22, L23}
{L9, L10, L11, L38}
{L17, L18, L19, L29, L38}

Vul-C1
Vul-C2
Vul-C2

1

1
1

SC-4
{L4, L22, L23}
{L4, L5, L11, L38}
{L4, L5, L17, L29, L38}

Vul-C1
Vul-C2
Vul-C2

1

1
1

SC-5
{L18, L22, L23}
{L17, L18, L19, L29, L30}
{L42, L43, L44, L49}

Vul-C1
Vul-C1
Vul-C1

1
1
1

SC-6
{L9, L10, L11, L49}
{L17, L18, L19, L29, L30}
{L18, L22, L23}

Vul-C1
Vul-C1
Vul-C1

1
1

1
1: L49

TP: true positive; FN: false negative; FP: false positive from FP-C1 and FP-C2;
FFP: false false positive (FP-C3)

5

have this knowledge as they do not analyze the client-side
context. These factors are in the root of the false negative.
Therefore, SATs only detected the vulnerability whose $sql
variable is assigned closer to the common sink (i.e., the second
vulnerability of the register operation), and generated a false
negative for the vulnerability that uses that sink, where the
$sql variable is assigned farther from it. Lastly, the third
vulnerability is from Vul-C1 and is included in the register
operation code. It is detected by all tools. From this analysis,
we conclude that these coding styles of sharing sinks and
reusing variables underlie the production of false negatives.

c) Scenario SC-5: All tools detected the three vulnera-
bilities. Their outcomes are justified by this scenario does not
have common cb, the register operation code is well delimited
and the login operation code although is split on two blocks
(P1 and P2), they are placed sequentially, and, hence, they will
work as a single block. Also, vulnerabilities are from Vul-C1
which may not interfere with SAT’s analysis, as we have seen
so far. Generally, this scenario can be compared to SC-1, and
so have the same results than it.

d) Scenario SC-6: This scenario was where the tools had
the worst results; they correctly detected two vulnerabilities
and produced one false negative and one false positive of FP-
C3 (an inexistent execution path). The composition of SC-6 is
similar to SC-5; however, the P1 and P2 blocks are intercalated
by the register operation block. P2 is the block that contains
the sink for executing the query composed on P1.

Despite all vulnerabilities are from Vul-C1, the vulnerability
associated with the login operation is not detected (the false
negative, FN) and in its place is produced a (false) false
positive (FFP). Since $sql is reused by the register operation
on line 29, it is used twice on sinks of lines 30 and 49. For
line 30, the detection is correct, but for line 49 it is incorrect,
producing thus a FFP, and consequently a FN. This happens
because tools do not know which is the form that belongs
line 49 and only consider the last variable assignment and
its taintedness for the sink analysis (i.e., the reassignment
of $sql on line 29). We recall that this approach of SATs
considering the last variable assignment and its taintedness is
the usual form of they performing the analysis and propagating
the taintedness. Moreover, the resulting FN in SC-3 and SC-4
scenarios rely on this form of analysis. Associated with this,
the fact of they do not consider the client-side context, and
so are not capable of distinguishing the parts of code that
belong to each operation, results on the production of false
execution paths (FFP) and FN. Lastly, these factors and this
coding style make clear the importance and necessity of SATs
have to consider the client-side context in their analysis.

From the analysis we made and the experience we have on
manual source code analysis, the most coding styles applied by
programmers are those illustrated by SC-1 to SC-4 scenarios,
followed by SC-6. This means that the common blocks and
reuse of variables are a usual practice. These manners of
programming are correct, but they induce SATs on performing
a wrong analysis. Nevertheless, they underlie the generation
of (false) false positives and, worst of that, false negatives.

Another aspect that contributes for this is the fact of SATs are
totally agnostic to the client-side context, and so they are not
capable of separating and distinguishing which blocks of code
are associated with the different parts (e.g., HTML forms) that
composing the web application surface.

Finally, we conclude that SATs to be more precise and
accurate, they need to be improved towards the integration
of client-side context inspection before processing the
server-side code. That way, SATs will have information
about the sets of entry points that work together, and then
should perform their analysis taking into account these sets
separately. For instance, for our use case and considering
the HTML code of Listing 1, we would have two sets
(one for each form): Login: <$_GET["email"],
$_GET["email_pass"], $_GET["login"]> and
Register: <$_GET["name"], $_GET["email"],
$_GET["email_pass"], $_GET["register"],
$_GET["email_pass_conf"]>. The analysis should
be guided through these two sets. In other words, it would
be performed twice, one for each form. In the first time,
the analysis will only consider the Login set, and so only
these entry points will be tainted and considered. The code
regarding other entry points will be ignored. Next, the analysis
is applied for the Register set. For example, for SC-3,
when the analysis is made using the Login set, the green
and orange cb would be analyzed since $_GET["login"]
belongs to the set in analysis. On contrast, the blue cb would
be ignored because $_GET["register"] does not belong
to that set. However, there are new challenges SATs will face.
As a first challenge, how to identify the server-side code that
processes a specific set of entry points? For instance, in the
SC-6 scenario, how will tools identify P1 and P2 blocks for
login set of entry points. Secondly, how to ensure that a given
variable assignment will be used on a given function (e.g., a
sink), instead of its last assignment (as usually happens)?

C. SQLi Exploitation

The main goal of a SQLi attack is to retrieve data from the
database and/or insert data there for later the attacker using it
in its benefit. As we said before, SATs are built having in mind
how to detect vulnerabilities by following the vulnerability
definitions stated in Section II-A. For that, their targets are
entry points and sinks, and by employing a top-down taint
analysis (most of them), they check if the former attain the
latter, without suffering any sanitisation or validation process.

Based on the vulnerability definition SATs follow, a char-
acteristic they have in their inspections is that the analy-
sis of a given data flow (execution path) is stopped when
they found a vulnerability, i.e., when a sink is attained.
A vulnerability is exploitable if the result of the use of
malcrafted (malicious) inputs on sensitive sinks is immediate
and visible, i.e., the application behaves differently from ex-
pectable. For example, considering the PHP instruction echo
$_GET["name"]; that has the goal of outputting to the
screen the $_GET["name"] content (the user name), and
which is a typical cross-site scripting (XSS) vulnerability. If

6

we assign a malicious JavaScript to $_GET["name"] and
use it on the echo sink, the result will be the script execution
instead of outputting the user name as expected. The result
of this action is immediate and visible; therefore, we can say
that this vulnerability is indeed exploitable.

While all vulnerability classes are exploitable based on
this principle and the vulnerability definition, for SQLi, both
principles may not be always valid. This means that a web
application can contain SQLi vulnerabilities, by definition,
but they are not exploitable, by the exploitation principle.
Furthermore, SATs, when detect SQLi flaws as true positives,
this does not mean that they are real exploitable SQLi.

The following analysis explores this assumption for register
and login operations from Listing 2, and based on the SC-
7 scenario from Figure 2 (described on last row of Table I).
SC-7 composition is equal to SC-1 plus a cb with distinct
code for each operation. This cb ends the login or register
operation based on the result of the last query made by it
(lines 12 and 30, respectively). For the purpose, for login a
user, he needs to provide his credentials (email and password),
which are inserted in a query (lines 9 – 11) to be executed
in the database (line 12). If the user exists in the database
a successful login message is outputted (lines 48 – 51). On
the other hand, for register a user in the database, he has to
provide his name, email, password and its confirmation (lines
17 –20). Before registering a user in the database, it is verified
if a user with that email already exists there (lines 25 – 26).
If not the case, a second verification is made to verify if both
passwords match, and, if such the case, then the user is inserted
in the database (lines 28 – 34). In the end, the differentiate
cb verifies if the user was correctly inserted in the database,
outputting a message accordingly (lines 54 – 55).

The code contains three SQLi vulnerabilities identified by
SATs, namely {L9, L10, L11, L12} for logging a user, {L18,
L22, L23} for checking the email and {L17, L18, L19, L29,
L30} for inserting the user in the database.

a) Check a user on the database with a malicious in-
put: Supposing, we want to retrieve data from the database
unduly. To do so, we insert as email the code ’ OR True
-- (line 18), which when put in SQL will result the fi-
nal query "SELECT * FROM users WHERE addr =’’
OR True" (line 22), a query where the condition is always
true. The query is executed in the database and returns all
users from users table (line 23). Variable $res receives the
database records as an object, but it is not returned to the
malicious user. At this point, the vulnerability has not yet been
exploited because the records have not been returned to the
user. Therefore, its real exploitation depends on what $res
variable is used by the application and the way it is iterated.

The real user verification is made by line 25, which verifies
if the number of resulting records is not zero. If it is the case,
this means that a user with that email already exists in the
database, and the registration process ends. Given that input,
the number of records on $res is not zero, this verification
is true, and the message of line 26 is displayed. As result, an
unexpected application behaviour does not occur, and nothing

happens. Therefore, we can say that this SQLi vulnerability
can not be exploitable by malicious code that intends to
retrieve more than one record from the database.

On the other hand, when we consider as email the code
’ AND False -- for inserting a user in the database, the
resulting query "SELECT * FROM users WHERE addr
=’’ AND False" when executed returns zero records. In
this case, the email check is passed and the code is put in the
insert query (line 29), but its execution will not be allowed
because the resulting query is not syntactically correct.

Therefore, despite SATs identified such vulnerabilities as
true positives, actually they are not exploitable. We recall that
a SQLi is exploited if the exploitation result is immediate
and visible by an unforeseen application behaviour. Also,
its exploitation depends on how the result object ($res) is
iterated. Hence, if this iteration is for counting the number
of records, the exploitation is not possible. Otherwise, if the
iteration is to access the data contained on records (e.g.,
using the mysqli_fetch_assoc function) and outputs it
to the user, in this case, the exploitation is effective. We recall
that a way to return the result of an attack to the attacker
is by outputting it to a file or screen, by iterating over it.
However, there is need that the application contains the code
that performs this.

b) Register a user with a sanitised email: As we stated
before, a manner to avoid vulnerabilities in applications
is sanitising the entry points. For SQLi and accordingly
with the mysqli_query sink (used in Listing 2), the
mysqli_real_escape_string sanitization function is
applied. The function escapes some characters that alter the
structure of the query, such as the prime and double-quote.

Considering one of the above malicious codes
as the user email (e.g., the first code), when it is
sanitised, the result is \’ OR True -- . Also,
suppose we insert the sanitization instruction $email
= mysqli_real_escape_string($con, $email)
on line 21, before using $email in query on line 22. The
resulting query is "SELECT * FROM users WHERE
addr =’\’ OR True -- ’". Afterwards, the query will
be executed in the database (line 23), which will return zero
records to $res since there are no users with that email.
That means that the check of line 25 is false, the password
validation proceeds (line 28), and if they match the query
of line 29 will receive that sanitised email, and it will be
inserted on the database (line 30). The process ends at line
55, outputting a successful user registration message.

As we can observe, there is no vulnerability on {L18, L21,
L22, L23}. But, unexpectedly a sanitised malicious input was
registered as a valid user in the database, something that
could not happen, i.e., an unexpected and visible application
behaviour occurred, like a vulnerability exploitation. More-
over, this sanitised code will be stored in the database as
malicious. MySQL before inserting it in the database removes
the sanitisation it has [20][21], and, therefore, it can be used
later by an attacker to perform a 2nd-order SQLi. Furthermore,
when SATs analyse this code (and considering all entry points

7

as being sanitised), they do not report any vulnerability.
c) Login a user: For a first analysis and considering the

first malicious code as the user email for the login operation.
The resulting query is the one presented in a), and so when
executed extracts all registers from the users table, which
are stored in $res variable. The check of line 50 verifies
if the number of records on $res is equal to one, meaning
that the user was correctly logged in. For our case, this check
is false, and nothing happens. Notice that the same result is
got when we use the second malicious code. Once again, as
observed in a) the vulnerability {L9, L10, L11, L12} may not
be exploitable, for the reasons already indicated in a).

The only chance we have to exploit this case is to provide
a valid email, as mail@mail.com’-- , considering that
mail@mail.com exists in the database. However, if we
employ sanitisation to this code (on line 9), this exploitation
is avoided. That allows us to say that, for this case, the
sanitisation is effective and works.

Therefore, for login, SATs correctly identify the SQLi as
being really exploitable. Moreover, if the application resorts
from sanitisation, they correctly will not identify this case.

After analysing these SQLi exploitation cases, we can
summarize the following: (1) the execution of the query per
se does not ensure the immediate and visible exploitation, but
what action is made over its results; (2) the analysis of SATs
behaviour is not complete for SQLi detection, meaning that
it is necessary to analyse what is done with the query results
in order to understand if there is an effective exploitation or
not. For that, the variable that receives the query result needs
to be tracked and verify what iterations are made over it; (3)
the applicability of sanitisation functions on the vulnerabilities
identified by SATs needs to be studied in order to understand
if they are needed or not.

V. CONCLUSION

The paper presents an analysis of the SAT’s behaviours
and detection when they process applications developed by
programmers with different coding styles and programming
practices, such as the reuse and share of variables. Due to these
practices, SATs often generate false positives and negatives.
Also, it presents an analysis and discussion about the exploita-
tion of SQL injection (SQLi) vulnerabilities detected by SATs
as being true positives. Our analysis demonstrated that SATs
are built having in mind how to detect specific vulnerabilities,
without considering such forms of programming and the
effective exploitation of SQLi. These results call to action for
a new generation of SAT to be capable of understanding the
code they process.
Acknowledgments. This work was supported by FCT through
project SEAL (PTDC/CCI-INF/29058/2017, LISBOA-01-0145-
FEDER-029058, POCI-01-0145-FEDER-029058), and the LASIGE
Research Unit (UIDB/50021/2020).

REFERENCES

[1] CVE, “CVE Details. The ultimate security datasource,”
https://www.cvedetails.com/browse-by-date.php.

[2] DarkReading, “Sql injection attacks represent two-third of all web app
attacks,” 2019, https://www.darkreading.com/attacks-breaches/sql-
injection-attacks-represent-two-third-of-all-web-app-attacks/d/d-
id/1334960.

[3] WhiteHat Security, “Application Security Statistics Report. The case for
DevSecOps,” Nov. 2017.

[4] I. Medeiros, N. F. Neves, and M. Correia, “Detecting and removing web
application vulnerabilities with static analysis and data mining,” IEEE
Transactions on Reliability, vol. 65, no. 1, pp. 54–69, March 2016.

[5] WhiteHat Security, “The DevSecOps Approach - Using AppSec Statis-
tics to Drive Better Outcomes,” Nov. 2019.

[6] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analysis for static
detection of web application vulnerabilities,” in Proceedings of the 2006
Workshop on Programming Languages and Analysis for Security, Jun.
2006, pp. 27–36.

[7] P. Nunes, J. Fonseca, and M. Vieira, “phpSAFE: A security analysis
tool for OOP web application plugins,” in Proceedings of the 45th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, Jun. 2015.

[8] J. Williams and D. Wichers, “OWASP Top 10 2017 – The Ten Most
Critical Web Application Security Risks,” 2017.

[9] J. Dahse and T. Holz, “Simulation of built-in PHP features for precise
static code analysis,” in Proceedings of the 21st Network and Distributed
System Security Symposium, Feb 2014.

[10] I. Medeiros, N. F. Neves, and M. Correia, “Automatic detection and
correction of web application vulnerabilities using data mining to predict
false positives,” in Proceedings of the International World Wide Web
Conference, Apr. 2014, pp. 63–74.

[11] ——, “Equipping WAP with weapons to detect vulnerabilities,” in
Proceedings of the 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, 2016.

[12] P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia, and M. Vieira,
“On combining diverse static analysis tools for web security: An
empirical study,” in Proceedings of the 13th European Dependable
Computing Conference, 2017, pp. 121–128.

[13] ——, “Benchmarking static analysis tools for web security,” IEEE
Transactions on Reliability, vol. 67, no. 3, pp. 1159–1175, Sept 2018.

[14] A. Algaith, P. J. C. Nunes, J. Fonseca, I. Gashi, and M. Vieira, “Finding
SQL injection and cross site scripting vulnerabilities with diverse static
analysis tools,” in 14th European Dependable Computing Conference
(EDCC), 2018, pp. 57–64.

[15] L. Flynn, W. Snavely, D. Svoboda, N. VanHoudnos, R. Qin, J. Burns,
D. Zubrow, R. Stoddard, and G. Marce-Santurio, “Prioritizing alerts
from multiple static analysis tools, using classification models,” in
Proceedings of the 1st International Workshop on Software Qualities
and Their Dependencies, May 2018, pp. 13–20.

[16] J. D. Pereira, J. R. Campos, and M. Vieira, “An exploratory study on
machine learning to combine security vulnerability alerts from static
analysis tools,” in 2019 9th Latin-American Symposium on Dependable
Computing (LADC), Nov. 2019, pp. 1–10.

[17] N. Medeiros, N. Ivaki, P. Costa, and M. Vieira, “Software metrics as
indicators of security vulnerabilities,” in 2017 IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE), Oct. 2017, pp.
216–227.

[18] ——, “An approach for trustworthiness benchmarking using software
metrics,” in 2018 IEEE 23rd Pacific Rim International Symposium on
Dependable Computing (PRDC), Dec. 2018, pp. 84–93.

[19] I. Medeiros, N. F. Neves, and M. Correia, “DEKANT: a static analysis
tool that learns to detect web application vulnerabilities,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
Jul. 2016.

[20] I. Medeiros, M. Beatriz, N. Neves, and M. Correia, “SEPTIC: Detecting
Injection Attacks and Vulnerabilities Inside the DBMS,” IEEE Transac-
tions on Reliability, vol. 68, no. 3, pp. 1168–1188, Sept 2019.

[21] ——, “Demonstrating a Tool for Injection Attack Prevention in
MySQL,” in Proceedings of the 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, Jun. 2017.

8

