
Generating Tests for the Discovery of Security
Flaws in Product Variants

Francisco Araújo, Ibéria Medeiros, Nuno Neves
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

fc45701@fc.ul.pt, imedeiros@di.fc.ul.pt, nuno@di.fc.ul.pt

Abstract—Industrial products, like vehicles and trains, inte-
grate embedded systems implementing diverse and complicated
functionalities. Such functionalities are programmable by soft-
ware and contain a multitude of parameters necessary for their
configuration, which have been increasing due to the market
diversification and customer demand. In addition, industrial
products are often built by aggregating different software parts
(components), constituting thus product variants. Product variants
with such variability need to be tested adequately, in particular
if one is concerned with security vulnerabilities. While efficient
automated testing approaches already exist, such as fuzzing,
no tool is able to use results from previous testing campaigns
to increase the efficiency of security testing the next product
variant that shares certain functionalities. This paper presents
an approach that can ignore already covered functionalities
by previous tests and give more importance to blocks of code
that have yet to be checked. The benefit is to avoid repeating
unnecessary work, hence increasing the speed and the coverage in
the new variant. The approach was implemented in a tool based
on the AFL fuzzer and was validated with a set of programs of
different versions. The experimental results show that the tool
can perform better than AFL in our testing scenario.

Index Terms—Fuzzing, Vulnerability detection, Coverage test-
ing, Software Variant testing, Software security

I. INTRODUCTION

The swift growth of software complexity coupled with the
demand for many software-based products in everyday life
activities, has caused a significant need for efficient soft-
ware testing approaches to assure certain security and quality
standards. As an example, a car requires extremely complex
and critical software which, when put under stress, could
eventually activate some sort of bug. If any of the existing
bugs happens to be exploitable (i.e., it is a vulnerability), then
it could give an opportunity to an external attacker to control
the car, putting lives in danger and originating millions in
damages. In addition, correcting the bug would incur in high
costs as updating the software in already sold vehicles has
induced losses in the order of billions annually.

Many of the industrial software products suffer from be-
ing highly complex and diverse, requiring large development
teams, and as such they can end up having a fair amount
of flaws. In fact, open statistics show an important number
of vulnerabilities being found each year in very diverse
software [1]. Such vulnerabilities can stay undetected for
considerable periods, since there are often pressures that limit
the testing period and security bugs are particularly difficult
to find in an automated manner. Attackers, on the other hand,

have a theoretically infinite time to discover those vulnerabil-
ities and only need to find one to compromise the system
and run whatever malicious code they desire. As a result,
most companies nowadays spend an increasing amount of
time, money and expertise in software testing and verification.
However, as previously explained, since resources are always
limited, many bugs still manage to remain in the final products.

In an industrial piece of software, there are usually several
code blocks or modules that can be reused in other products.
The inclusion or not of shared code also occurs depending on
configuration parameters, when setting up distinct function-
alities in a product line, creating in fact various versions of
a program. In addition, third-party software components can
be present in many different programs. Software re-usability
brings many benefits, such as allowing a faster ensemble of
new software. However, it also lets bugs to be carried and
to be inserted all product variants1 that happen to utilize
them [2], and so it can lead to an increase in the number
of vulnerabilities.

Nowadays, fuzzing is probably the most effective state-of-
the-art software testing approach for vulnerability discovery. It
works by feeding the program with randomly-generated inputs,
recording any crashes found while doing so. It has been used
successfully by major software companies for security testing
and quality assurance. However, no fuzzer to date takes into
consideration already tested modules or code blocks shared
between product variants. As such, a lot of redundant tests
occur, which decreases the efficiency of the procedure. This
happens because tools are busy exploring already checked
program paths, eventually finding equivalent flaws, with not
much added value to the company conducting the tests.

The paper presents a greybox fuzzing approach for detecting
vulnerabilities in variants developed in the C/C++. The tech-
nique was implemented in a fuzzer called PandoraFuzzer,
which was constructed by modifying the AFL fuzzer [3],
[4]. The resulting fuzzer can find software flaws in a simple,
efficient and productive way, as it is common among fuzzers,
but without having to redo the testing of already covered
functionalities, or modules, that are common among product
variants. This is achieved by retaining the results of previous
tests to keep track of the code blocks already tested. As
such, it can minimize the amount of repeated test cases done

1In the rest of the paper, we will call software that shares modules or
components as product variants or simply variants.

1

and maximize the coverage on the unshared functionalities,
saving precious time and money. In our initial experiments,
we have resorted to different program versions as a way to
get variants. The results demonstrate that PandoraFuzzer
can potentially perform better than AFL, in a testing scenario
where multiple product variants have to be validated.

The contributions of the paper are: (1) A greybox fuzzing
approach that can be used to detect vulnerabilities in multiple
program variants. The proposed architecture takes advan-
tage of previously done test procedures to best understand
how to test a given variant without redoing work. (2) The
PandoraFuzzer tool that shows: (i) the capacity to learn
from previous fuzzing efforts, avoiding/reducing the genera-
tion of test cases that check already evaluated code parts; (ii)
the ability to replicate the crashes found during fuzzing by
providing to the user the test cases that crashed the programs.
(3) An experimental evaluation of PandoraFuzzer with
four large applications from the GNU binutils, to reveal the
viability and effectiveness of the tool when compared to AFL.

The outline of this paper is as follows. Section II explains
some relevant concepts and provides fundamental context
for the work done in this paper. Section III is dedicated to
explaining the proposed solution and issues it addresses, and
Sections IV and V detail its main components. Sections VI
and VII describe the current implementation of the proposed
architecture in the PandoraFuzzer tool as well as evalu-
ating and validating the tool with four applications. Section
VIII concludes the paper.

II. CONCEPTS AND RELATED WORK

A. Software Validation and Vulnerabilities

Software validation is the process of making sure the
software matches the needs of the user and works as intended,
fulfils the software requirements and specifications and has
the least number of bugs possible. Each test examines the
behaviour of the software under test (SUT) to verify if it has
any incoherent behaviour and contributes to raise the confi-
dence on the correctness of the product. Testing often works
by developing inputs that have a certain code coverage of the
program. This is usually done with knowledge of the program
to be tested. In order to increase the speed and the amount
of testing done, automation of software verification should be
performed whenever possible. In software validation, a test
case is composed of the test values and the expected results,
and a test set is a set of test cases.

Testing is made to ensure three important features of SUT:
(1) software functionalities: testing the functionalities for what
SUT was designed; (2) safety: testing if the safety properties
of SUT are being ensured; (3) security: testing if SUT does not
contain vulnerabilities which can compromise its the correct
behaviour and inccur in software failures. For safety and
security, an important distinction must be made between a
fault/bug, an error and a failure. A software fault is a defect.
An error is an incorrect state of the program, for example,
an invalid value in a variable that happens due to some fault.
A software failure is an incorrect behaviour with respect to

the requirements defined for the program. Another distinction
that should be made is between bug and vulnerability. A
vulnerability is a bug, but not all bugs are vulnerabilities. A
vulnerability can be described as a flaw or weakness in the
application which can be the result of a design flaw or a simple
implementation bug, which allows an attacker to exploit it to
compromise the security properties of an application.

Vulnerabilities are the root cause of security problems and
when they are exploited by attackers, they can cause damage to
the system. In this paper, we consider the classes of vulnerabil-
ities identified in the Common Weakness Enumeration (CWE)
[5] as problems for the applications programmed in the C
and C++ languages, namely variable overflow and underflow,
integer and memory. For the former, for example, HOTracer
finds heap overflows vulnerabilities by using dynamic analysis
[6], and angr does vulnerability detection through a binary
analysis [7]. For integer vulnerabilities, SwordFuzzer [8] and
DEEEP [9] use taint analysis to discover such bugs. To detect
vulnerabilities related to memory leaks, valgring [10] and
LAVA [11] are two tools for the effect. Muench et al. [12] and
Veen et al. [13] also investigated this class of vulnerabilities.

B. Fuzzing

Fuzzing is a popular technique for finding software bugs
where the SUT is barraged with randomly generated test cases.
It is used for security testing and quality assurance proposes,
such as in the work done by Takanen [14], and by Oehlert
[15], ever since it was introduced. While the program is being
put under test, it is monitored in the hopes of finding errors
that might arise as a result of the input given.

Although fuzzers differ in many significant ways, in general,
most of them follow the algorithm shown below.

1 General Fuzzing Algorithm{
2 queue <- Initial Test Cases of concrete valid input
3 while (not DoneWithFuzzing){
4 chosenTestCase <- chooseTestCase(queue)
5 runProg(chosenTestCase)
6 mutatedTestCase <- mutate(chosenTestCase)
7 if (isInteresting(mutatedTestCase))
8 queue <- addToQueue(mutatedTestCase)
9 }

10 }

The algorithm always receives, and returns, concrete valid
inputs (or test cases) that the SUT processes. After running
the program with the received input, it mutates the input used
in the execution to generate new input, which might lead
to different paths being covered when it is executed. Some
fuzzers also use the information gathered in the execution to
help generate and pick better program inputs. If the program
input is deemed interesting, it is saved to the queue in order to
be further mutated to uncover different paths in the program. In
the end, it is necessary to decide if the fuzzing process is done.
This is generally accomplished by a timeout or by reaching a
certain number of discovered bugs, with the ultimate goal of
trying to find inputs to make the project crash. These inputs
are then returned to the developers and testers that can use
them to locate the bug and reproduce the crash.

2

There are three categories of fuzzers: blackbox, whitebox,
and greybox. Our work relies on the last one, which we present
next the works we consider more relevant and related to our
solution. However, we briefly give first an overview of the
other two categories.

Blackbox fuzzers were the original fuzzers. They treat the
program as a blackbox, i.e., without having any knowledge
about the source code of the program. Even without having
prior knowledge, they have to generate an instrumental amount
of random test cases in a very short amount of time to perform
the fuzzing task. They has the greatest ability to generate the
largest amount of tests, but only provides limited coverage
and so the testing can be very inefficient. FuzzSim [16] is an
example of blackbox fuzzer.

Whitebox fuzzers fix many of the limitations blackbox
fuzzers have, since this sort of fuzzers miss bugs that depend
on specific triggers values. Starting from a well-formed input,
whitebox fuzzing consists of symbolically executing the SUT
dynamically, gathering constraints on inputs from conditional
branches encountered along the execution. The most known
whitebox fuzzer is SAGE [17]. Other works were developed
based it, as the Bounimova et al. [18].

Greybox fuzzers uses only lightweight instrumentation to
glean on the program structure without requiring any previous
analysis. This may cause a significant performance overhead
but increases the code coverage as a result. In practice, greybox
fuzzing may be more efficient than whitebox fuzzing with
more information about the internal structure of a program
and it may also be more effective than blackbox fuzzing.

Hawkeye [19] combines static analysis and dynamic fuzzing
for finding C/C++ vulnerabilities. VUzzer [20] is a fuzzer that
implements a feedback loop to help generate new inputs from
the old ones, with its two main components being a static
analyser and a dynamic fuzzing loop. S. Karamcheti et al.
[21] show that sampling distribution over mutational operators
can improve the performance of AFL. They also introduce
Thompson Sampling, which is a bandit-based optimization to
improve the mutator distribution adaptively. They focus on
improving greybox fuzzing by studying the selection of the
most promising parent test case to mutate. LibFuzzer is a
coverage-guided, evolutionary fuzzing engine to test C/C++
software [22]. Another such fuzzer is honggfuzz [23], a secu-
rity oriented, feedback-driven, evolutionary fuzzer. Alexandre
et al. [24] presented a way to optimize test case selection in
order to increase coverage of the software under test. Grieco
et al. [25] developed VDiscover, a tool to predict if a test
case is likely to discover software vulnerabilities by using
lightweight static and dynamic features implemented using
machine learning techniques. Klees et al. [26] propose some
guidelines to better test and evaluate fuzzing algorithms.

Despite there are various fuzzing works that address C/C++
vulnerabilities, none of them takes into account the results of
variant tests already made for a product to be reused in other
product variant. Also, they do not learn such tests in order to
prioritize them when reuse them. The approach we propose
contains such features.

C. AFL

AFL (American Fuzzy Lop), is one of the most popular and
used greybox fuzzers. A fuzzer works by testing the software
target by barraging it with test cases generated automatically
through mutations. AFL can execute hundreds to thousands
of inputs per second, covering a large amount of the program
attack surface in a relatively short amount of time. In a
broad sense, AFL selects a prior promising parent test case
to sample, mutates its contents, and executes the program
with the resulting child input. It verifies the behaviour of the
target software against incorrect data inputs to find flaws, such
as faulty memory management, assertion violations, incorrect
Null handling, bad exception handling, deadlocks, infinite
loops, and undefined behaviours. If such flaws are reached
and exploited the SUT can crash and stay inoperable.

An AFL key is the use of coverage information obtained
during the execution of the previously generated testing inputs,
which is achieved by the injection of lightweight instrumen-
tation in the SUT during compilation. More specifically, after
the assembling stage has finished but before the linking stage
has started, a few assembly instructions are added to each
basic block to identify them and to track the path an input
takes while being processed by the SUT. This is done because
relying solely on random mutations decreases the chances to
reach certain previously unseen parts of the program. The
instrumentation has a modest performance impact and aims
to identify new paths in the program and to have the ability
to find the edges have been passed on the program.

Another key behind AFL is its forkserver component. The
most common way to fuzz programs is to just keep executing
the SUT over and over with different random inputs. This
approach has its problems as most of the time might be spent
waiting for program cloning (execve), the linker and all the
library initialization routines, to do their jobs. To face to this
issue, the forkserver’ AFL lets execve happen, get past the
linker and then stop early in the actual program, before it gets
to process any inputs generated by the fuzzer. Once the SUT
reaches the designated point in the program, it simply waits for
commands from the fuzzer. When it receives a ”go” message,
then it calls the function fork to create an identical clone of the
already-loaded program. The injected code returns control to
the original binary, letting it process the fuzzer-supplied input
data and then relay the PID of the child process to the fuzzer,
In the end, it goes back to the command-wait loop.

After the instrumentalization is done, the fuzzing phase
starts by passing through every interesting test cases, mutating
them in order to find new interesting test cases, i.e., if they
trigger new coverage. If the test case or any of its mutations
cause a crash of the program, then the test case is added to
the crashQueue. This queue keeps all the inputs that crashed
the program. If the program times out, then the test case is
added to the hangQueue.

III. PANDORAFUZZER GREYBOX FUZZER APPROACH

This section, before presenting the proposed approach, gives
an explanation of issues and challenges it intends to address.

3

A. Issues and Challenges

All the issues and challenges enumerated below occurred
with the intent to propose an approach that learns how to best
test a given variant and also focuses the fuzzing efforts on
the patch fixes. This must be achieved while still fuzzing the
original program for any vulnerabilities that might have yet to
be detected and might have made it to the patched application.

1) Shared Functionality Discovery - In order to direct the
SUT to targets that have yet to be fuzzed, we need
to build test cases that do not cause the execution of
functionalities that have previously been fuzzed in the
program, or that are shared between programs. Hence,
there is the need to allow the fuzzer to avoid repeating
work. This gives the tool the ability to reach for example
a patch location, letting it fuzz the code modified by the
patch sooner than AFL.

2) Multiple Program Fuzzing - One forkserver would not
suffice to fuzz more than a single program. Hence the
forkserver logic itself should be changed somewhat to
allow for more than one program to be fuzzed at a time.
Multiple program fuzzing allows for testing of both SUT,
not only focusing the fuzzing efforts on the patched
part of the program but also the unpatched region that
might still have to be tested. This gives the solution
the ability to find previously undiscovered vulnerabilities
that perchance might have been passed into the next
version of the program.

3) Interesting Program Input Interchange - In order to
avoid repeating work while fuzzing, interesting program
inputs that can trigger new behaviour in more than one
program variant have to be shared among all testing
operations, so they can learn from it. The solution to this
problem allows hidden vulnerabilities or hidden paths
in one variant to be discovered by the other program
variants faster than if we only had been fuzzing each
SUT separately.

B. Approach Overview

The goal of the proposed greybox fuzzer approach is to
discover vulnerabilities in product variants, resorting of the test
cases made between variants. As product variants contain soft-
ware parts (e.g., modules, components) that can be common
to different products, our approach proposes to reuse the test
cases of a given software part that were already executed for a
product in another variant. For one hand, this avoids repeating
tests that have already been seen and allows reducing the spent
time on testing products. For the other hand, this allows the
approach to learn how to best test a given product variant.

The approach focuses on the development of a solution
based on AFL, i.e., a modified AFL version that could solve all
the issues described in the previous section. As such, it allows
for a multitude of programs to be fuzzed at the same time and,
for various crashes and interesting inputs to be saved for each
and every one of the variants in such a way to facilitate the
interaction with the user. In addition, it allows, for interesting

program input interchange, supporting the sharing of previous
tests that have been performed. Hence, it is expected a faster
vulnerability discovery for example if bugs were introduced
in a patch correction.

The approach comprises two phases, namely Instrumental-
ization and detecting flaws. The goal of the instrumentalization
phase is to simply facilitate the second phase by provid-
ing information about the structure of the SUT, namely the
identification of the basic blocks that compose it. As such,
the detecting flaws phase, when fuzzing the various program
variants, can decide which blocks to target in the future and
which blocks are less interesting. The fuzzing is done by
generation, execution and reusing test cases to detect flaws
in SUT. The instrumentalization phase also allows for faster
execution rate by means of the forkserver, explained in Section
IV-A5. More details over these phases are described in the next
two sections.

IV. INSTRUMENTALIZATION AND BASIC BLOCKS
IDENTIFICATION

A. Instrumentalization

The instrumentalization phase comprises five modules
which are described next. In Fig. 1 are represented the main
steps a program goes through while being compiled by afl-
gcc, resulting the assembly code of the program, which then
is instrumentalized.

1) Initialize Instrumentalization: Performs the initialization
of the instrumentalization by means of processing the program
source code. It acts as a compiler, instrumentalizing the pro-
gram while the executable (assembly code) is being generated.

2) Detect Basic Block: Goes through all basic blocks in
the resulting assembly code from the provided source code,
essentially instrumentalizing all basic blocks detected.

3) Identification of Basic Blocks: Structural information of
any given program is highly important in our solution. The
outputs of this module are used by many of the other modules

Fig. 1. Instrumentalization and basic blocks identification phase data flow.

4

from the fuzzing process. Nevertheless, this module aims to
generate unique basic blocks identifiers that will allow the
fuzzer to identify shared blocks between variants. To do so,
the ID is the hash of the contents of the basic block itself.

This is the major difference between AFL and our approach,
i.e., the way the basic block identifier is generated. In AFL
it consists of simply creating a random value. This is enough
in AFL case because it is not looking for shared structure
information across program variants. However, our approach
is looking for the ability to differentiate between two programs
functionalities. This is done at the basic block level. Since the
ID is based on the contents of the basic block itself, this means
that, all different basic blocks will have a distinct identifier
associated to them. As such, if two programs share any basic
bock, they will share the same IDs. The process of generating
IDs and an example is presented in Section IV-B.

4) Modify Assembly Code: Modification of the assembly
code is done much like AFL in our approach. Simply adding
the identifier to the basic blocks.

5) Forkserver: When fuzzing any given program, the sim-
plest way to do it is to find any given test case that exercises
the desired functionalities and then keep executing it over and
over again. This, however, is not the optimal way of fuzzing
any given application, since the tool needs to continuously
repeat slow operations like the execve system call, the linking
of all libraries, and all the library initialization routines.

As we stated previously, the forkerver is an injection of a
small piece of code into the program being tested, with the
goal to let execve happen, get past the linker and stop before
the program starts processing any inputs. Once this is done, the
forkserver simply waits for a go command, calls the function
fork, and then creates an identical clone of the already-loaded
program and continues processing the input. This mechanism
does not change from the one provided by AFL, except for
the support for multiple program variants.

B. Basic Blocks Identification

As we said before, a basic block is a sequence of code
lines with no jumps in between. Compilers usually decompose
programs into their basic blocks as a first step in the analysis
process, so we take advantage of this feature to get these
basic blocks and identify them uniquely. Nevertheless, we
can identify which ones are shared between variants and were
already tested.

The generation of the basic block identifier is made in three
steps, which are presented next and illustrated in Fig. 2.

First step. The goal of this step follows the idea: to avoid
having an identifier that depends on the content of a basic
block that could change among program variants, we remove
all unnecessary lines that do not affect functionality. To do so,
firstly, the assembly code of any basic block is divided into
lines, and then all unimportant lines from the assembly code
(as indicated in red in the figure), such as line information
or labels, are removed. Second step. This step removes the
registers (e.g., eax as marked on red in the figure) because their
contents are volatile. Hence, they could change across program

First step Second step Third step

Identifier

Fig. 2. Example of basic block identifier generation.

variants. Third step. All the remaining lines are concatenated
into a single line and its hash is calculated, generating thus
the ID. The hash is an adaptation of the Pearson hashing to
guarantee better distribution of the hash values and the fast
execution on the registers of the processor.

V. DETECTING FLAWS

The detecting flaws phase is responsible for fuzzing the
SUT, reusing the tests results of the basic blocks shared
between variants and already tested. It is composed of six
modules which are illustrated in Fig. 3 and explained next.

1) Queue Handler: It is of the upmost importance the
ability to maintain information about multiple test cases in an
efficient manner. For that, the queue handler contains, manages
and interacts with the queues that represent the exploration
state of the program. Each variant will be represented by a
Queue in the Queue handler. That means that each queue
contains the various basic blocks belonging to the program, as
well as the information about all interesting inputs to be fuzzed
in the program. The queue handler also contains information
about all top test cases for each program, where a top test
case represents the best test case that can reach a specific
basic block. A basic block is an element of the queue which
belongs to an hash map. This map allows the Queue Handler
to verify quickly if an element is already in the queue, to
avoid repeating the work of initializing the element twice and
to quickly add the said element to the queue. The basic block
ID is used as the key element of the hash map and the value
is the number of times it was executed during the fuzzing
process. Hence, an element of the hash maps that as a value
equal to zero represents a basic block which may or may not
be in the program itself. This basic block has yet to be seen
during the fuzzing process of the program.

An added benefit of the use of multiple queues we propose is
the organizational aspect it provides. This means, for instance,
if a testing input results in a crash for a specific program, it
becomes simple to identify the other variants that might also
suffer from the same problems.

Almost all other modules below interact with the Queue
Handler, be it for simple queue addition when a test case is
deemed interesting or for obtaining an element of the queue
for the splicing mutation phase (explained next).

2) Next Test Case Selection: Chooses the next test case to
fuzz and mutate. The selection of the next test input to fuzz is

5

Fig. 3. Proposed fuzzing procedure architecture data flow.

a highly important subject that can make or break a fuzzer. If
the fuzzer followed a random selection criteria, it could waste
time with either tests that have already been performed or with
tests that are less likely to trigger new coverage. A test case is
considered as more or less likely to trigger new coverage based
on the score assigned to it. Therefore, this module determines
which test case should, or should not, be fuzzed next. As such,
it interacts with all the modules that have to process the test
case chosen, such as the mutation module. To simplify, we
propose to evaluate and mark each test case as interesting or
not interesting; when selecting a test case, the module simply
picks the interesting test cases for fuzzing and skips the others.

3) Is Interesting: Unlike AFL, where an interesting test
case is deemed interesting simply if it uncovered new
edges/basic blocks in the program, our approach considers a
test case interesting not only if it triggers new coverage in the
SUT, but also if it uncovers new information in the variants of
the program being tested. This is so we can prioritise inputs
that trigger never before seen functionalities in any variant,
avoiding repeating tests that lead to the same result.

To do so, all test cases, both initially given and generated
during the fuzzing procedure, are deemed either interesting
or uninteresting. By default, uninteresting test cases are only
fuzzed after all interesting test cases have been processed.

4) Assign Score: Each test case has an associated score (or
energy) that is used to determine how much effort the fuzzing
process does to find and uncover vulnerabilities or paths in
the program. The score takes into consideration the number
of new paths uncovered, how far along the fuzzing process
the test case was found, the size of the test case and how long
the program takes to process the test case is. This score is
calculated as the same way as AFL.

As mentioned before, one of the goals of our solution is to
avoid repeating work that has already been done in previous
fuzzing runs. This goal can be stated as focusing the fuzzing
efforts on any previously unseen functionality or code block.
That is, any path of code blocks that is tested on the exact
same circumstances only in different programs will normally
not reveal any further information from what it would reveal
from one of the other variants. Taking this into consideration,
all fuzzing efforts to understand more about the structure of
a single program can be applied on the structure of another
variant, as long as the two share some sort of functionality
or code. Using this information, each test case has a score
directly related to its performance in the specific program it
was being executed on. The larger the score a test case has,
the more mutation time is given, allowing for more inputs to
be generated and developed from the said test case.

5) Mutate Input: The mutation process is exactly like the
one found in AFL. It tries to find interesting test cases by
both deterministic mutations, done once for each test case,
and havoc mutations, which are random mutations of the test
case itself. The number of mutations done to the test case
depends heavily on the associated score.

6) Crash Queue Handler: The approach comprises a crash
queue for every single variant. This is done mostly so the data
storage is more organized, and the user has a simpler way to
identify which test case inputs crash which variant.

VI. PANDORAFUZZER IMPLEMENTATION

We implemented our greybox fuzzer approach in a fuzzer
called PandoraFuzzer.

As we stated before, our tool is based on AFL and detects
the same types of vulnerabilities as AFL. Our fuzzer was
implemented mostly in C but has a single component of the

6

instrumentalization phase that was implemented in assembly
code. This is the code that is injected in the binary of the
SUT. This component is inserted by gcc or clang, allowing
the collecting of coverage information and supporting the
forkserver module (see Section IV-A5).

We applied a set of code modifications to AFL and added
new nodules to it. To better describe the differences between
the two fuzzers, we describe in the next section what was
changed from the original fuzzer and why, explaining the logic
behind those modifications and discussing some alternatives
that were considered at the time. This is presented along-
side the reasoning behind the decision-making process when
choosing between each of the alternatives. Fig. 3 highlights
in green the modules that were modified in the original AFL
architecture to create our own fuzzer solution.

A. Main AFL Modifications

1) Program Instrumentalization: One big difference that
allows for better internal program structure understanding, is
the way we instrumentalize the programs to be tested. The
edge identifier is no longer randomly generated, like in AFL,
but it is based on the contents of the basic block itself.
This allows the comparison of coverage information among
program variants, which solves the problem number one in
Section III-A. In PandoraFuzzer figuring out if two pro-
gram variants contain the same functionality, or basic block,
consists of simply checking if the programs share a basic
block identifier. In our solution, the identifier corresponds to
a summary of the contents of each basic block, which is
represented by a hash, as explained in Section IV-B.

2) Multiple Forkserver Usage: This AFL modification will
address the second challenge presented in Section III-A.
Unlike AFL, where there is a single forkserver for a program,
we have multiple forkservers for the various variants. This
is done because each forkserver can only interact with the
assembly code of a single program, making it impossible to
have one forkserver for multiple programs. Hence the only
logical choice was to have multiple forkservers, so we can
have each one of them interact with their own respective
program. As a side effect, we also simplify the way we
obtain the coverage information since we do it much like AFL
but maintain a variable that tells us from which variant the
information is coming from.

3) Multiple Program Transition and Usage: By definition,
single program vulnerability detection tends to lack the moti-
vation to explore other programs besides the SUT. This creates
the necessity to give to the fuzzing solution a mechanism
where it can explore and discover interesting testing inputs for
each and all of the variants. The solution to this issue resides
on simple program switching when a given time interval has
passed, allowing each variant to be fuzzed a similar amount
of time, and every so often share what was learned with past
tests. However, to get this solution more than one solution was
experimented. For instance, multiple procedures, each running
and fuzzing a single program was tried, since this allowed
for each program to be fuzzed at the same time, theoretically

allowing for faster results. However, the execution speed of
each program left a lot to be desired because the more
processes we have, the slower each process will be. This
coupled with the fact that the solution would require an amount
of cores that would have a linear growth as the number of
programs become larger. Hence, it was decided to employ a
single process switching among program variants while doing
the fuzzing.

4) Program Input Organization using Multiple Queues:
Since AFL focuses on fuzzing a single program, a lone test
case queue is enough to store both the results of previous
fuzzing operations, but also to organize the internal logic of
the program. Unlike AFL, however, our approach might fuzz
more than a program. Hence, there is a need for multiple queue
management in the fuzzing mechanism.

5) Interesting Program Code Block Identifier Retrieval: In
order to be able to identify which basic blocks the current input
triggered, our fuzzer needs to have a way to be able to track
code coverage in any given program. As such, our solution
resorts much to the same approach of AFL, with one key
difference. The approach of AFL consists of writing the edge
to shared memory every time the execution passes through
a basic block. The key difference consists on the way the
basic block identifiers are generated before they are written
into shared memory. We use edge coverage instead of simply
tracking each basic block, allowing the collection of more
structural information about the path being tested. To do so, we
propose to try to directly target specific areas in the program
variants by first identifying those areas and then prioritising
inputs that passed through those areas.

6) Interesting Program Input Sharing: Simply fuzzing all
program variants would yield no more interesting results than
to simply fuzz those variants independently, one at a time,
for the same amount of time. Furthermore, to avoid repeating
tests that have already been done and would bring no different
result, our approach proposes a mechanism that allows the
fuzzer to learn from all the previous tests that have already
been done. A mechanism which will allow it both to avoid
repeating tests and also to help it uncover new paths, which
are based on the paths already uncovered while fuzzing one
of the variants.

The mechanism derives from the following concept. When-
ever the fuzzer is switching between programs to fuzz, all the
previously interesting inputs uncovered for the earlier variant
that was fuzzed are executed on the next program. If the fuzzer
finds any new coverage, i.e., any basic block that was not
identified before, the fuzzer will designate it as interesting
and save it for later tests. Then, the program input is marked
as already checked for that program with the goal to avoid
running the input more than once. In case the input is not
considered interesting, it is simply marked as not useful for
the specific program variant.

This mechanism avoids repeating work because all the pre-
vious tests that have been done are copied into the new testing
program queue, excluding all the mutations and exploration
that derived those inputs. At the same time, it allows the

7

tool to learn all paths and crashes that are uncovered by the
previous tests. This proposed mechanism will address the last
issue stated in previous section.

VII. EXPERIMENTAL EVALUATION

Our experimental tests compare the results of the
PandoraFuzzer with AFL, demonstrating the capability to
detect potential bugs and the ability to avoid repeating work
between program variants.

That way, the goal of the experimental evaluation was to
answer the following questions: (1) Is the tool capable of
detecting all vulnerabilities AFL is able to? (2) Is the tool
able to learn from a previously tested program? (3) Is the tool
at least as efficient as AFL at detecting vulnerabilities?

A. Testing Setup

The testing was performed on four different applications
from two versions of binutils, a package containing several
utilities distributed with the Linux OS. In order to test whether
an application could learn from a previously executed testing
procedure, two versions of each application were used. We
first began by executing PandoraFuzzer for a single hour,
fuzzing each application along with their different version.
Afterwards, each application was fuzzed for 8 hours in the
same conditions. Finally, the results were compared with AFL
to be able to identify if we could find all vulnerabilities and
to determine if we are at least as effective as AFL. To obtain
the most precise values possible, metrics were used from the
work of G. Klees et al. [26]. As such each program version
was run for a total amount of ten times, the results presented
here represent the average of those ten runs and the initial
input was the same for each program.

The evaluation was conducted in the following steps: (1)
instrumentalizing the four binutils programs and their versions
using the process described in the Section IV; (2) Instrumen-
talizing a copy of the programs and their variants with AFL
instrumentalization; (3) running the PandoraFuzzer tool
for 1 hour and then for 8 hours with a given program and
their variant program; (4) running a given program for 1 hour
and then for 8 hours using AFL; then, doing the same for the
variant of the program; (5) Compare the results when AFL is
run individually in both variants and when using our tool for
both programs at the same time.

B. Applications under test

Table I provides relevant important information about the
binutils applications under test, such as the total number of
files per program and the number of paths found during the
evaluation procedure with either AFL or PandoraFuzzer.
The applications are cxxfilt, readelf, strings and size, and the
two versions of binutils used are V2.25 and V2.26.

C. Vulnerability Detection

This section contains an evaluation on the efficiency of
PandoraFuzzer at discovering vulnerabilities on the binu-
tils applications and compares it with AFL. We report the total

TABLE I
binutils APPLICATIONS CHARACTERIZATION.

Version Program LoC Total Files Total paths

V2.25

cxxfilt 5994 17 2739
readelf 13275 3 644
strings 5899 16 81

size 5807 14 758

V2.26

cxxfilt 5816 17 2703
readelf 14315 3 281
strings 5895 16 80

size 5799 14 694

number of unique crashes detected for both versions of binutils
as they provide an indication of potential vulnerabilities (bugs)
that are triggered with particular test cases. Table II shows the
results for both tools for a testing period of 1 hour and 8 hours.

TABLE II
UNIQUE CRASHES OBSERVED IN BINUTILS APPLICATIONS.

Testing 1 hour Testing 8 hours
Version Program AFL PandoraFuzzer AFL PandoraFuzzer

V2.25

cxxfilt 100 123 406 505
readelf 0 0 0 0
strings 0 0 0 0

size 12 8 18 12

V2.26

cxxfilt 95 140 497 561
readelf 0 0 0 0
strings 0 0 0 0

size 0 0 0 0

Fig. 4 depicts the average number of crashing test cases
detected by PandoraFuzzer and AFL in Binutils V2.25 for
one-hour tests and for eight hours tests. As the figure indicates,
our tool was able to identify more crashing inputs than AFL.

The results answer both the first and last questions. The first
question is answered since all types of vulnerabilities AFL
found here were also found by the tool. The last question is
answered since PandoraFuzzer managed to, on average,
detect more unique crashes than AFL.

D. Code Coverage

To understand the difference between the code coverage
achieved while fuzzing two programs, we used the number
of paths found during the execution of a given program. Table
III shows the total number of paths discovered by both tools
for the four applications. While we can see an increase in
the number of paths found by PandoraFuzzer in binutils
V2.25 that does not occur in binutils V2.26. This is due to the
fact that PandoraFuzzer focused most of the test cases
generated on the code that was changed between versions,
thus avoiding repeating the work previously done.

On Fig. 5 we can see how the tool compares against AFL
when finding new coverage information on binutils V2.25 for
one-hour tests, while Fig. 6 demonstrates the same for binutils
V2.26. The results present in Fig. 7 and Fig. 8 show the exact
same thing for eight-hour tests. All in all, it is possible to
observe that our tool is able to increase code coverage when
compared with the coverage provided by AFL.

8

Fig. 4. Detections over a period of 1 hour (first two graphics) and 8 hours (last two graphics) for fuzzing tests

Fig. 5. Coverage 1 hour testing for binutils V2.25.

Fig. 6. Coverage 1 hour testing for binutils V2.26

TABLE III
MAXIMUM NUMBER OF PATHS FOUND IN BINUTILS

Version Program AFL PandoraFuzzer

V2.25

cxxfilt 5811 5962
readelf 1090 1415
strings 72 74

size 1599 1143

V2.26

cxxfilt 6597 5820
readelf 1090 1028
strings 75 71

size 1443 1057

Fig. 7. Coverage 8 hour testing for binutils V2.25.

Fig. 8. Coverage 8 hour testing for binutils V2.26.

To collect coverage information, we resorted to the afl-
cov [27]. Afl-cov uses the test case files produced during
the fuzzing phase to generate code coverage results for each
program being tested.

Each binutils version had its four programs run once with
afl-cov. Table IV shows the obtained results. The results were
manually analysed, and they indicate that PandoraFuzzer
focuses, around 20% more, on the changes that appear in the
code of in the program variants, with the areas that did not
change being mostly tested by the interesting inputs found
in the previous fuzzing sessions. This answers the second

9

question, since the focus of the fuzzing efforts changed when
subjected to previously learned information.

TABLE IV
RESULTS FROM AFL-COV APPLICATION UNDER THE FOUR PROGRAMS.

Testing 1 hour Testing 8 hours
Version Program AFL PandoraFuzzer AFL PandoraFuzzer

V2.25

cxxfilt 2174 1746 6157 5086
readelf 280 412 1062 1369
strings 66 47 74 68

size 694 384 1555 787

V2.26

cxxfilt 2503 2482 6073 5122
readelf 279 374 1068 1022
strings 71 60 76 69

size 667 397 1589 688

Overall, on average over all four binutils applications,
PandoraFuzzer was able to detect more unique crashes
and a higher percentage of the total paths in a given amount
of time when compared with AFL.

VIII. CONCLUSION

The paper presents a greybox fuzzing approach and the
PandoraFuzzer tool for automatic vulnerability detection
in product variants written in the C and C++, utilizing the
results of previous testing sessions of program variants to
further boost code coverage and the number of vulnerabil-
ities detected. The approach works as a mechanism able
to identify shared functionalities among variants, alongside
with the capability to learn from previous fuzzing sessions,
and finally introducing the ability to avoid repeating tests
that would only trigger functionalities that had already been
tested to a certain degree of confidence in a previous fuzzing
session. The tool developed was built upon AFL and utilizes
an instrumentalization mechanism that differs from AFL to
be able to identify shared functionalities between program
variants. The tool also utilizes a learning mechanism so that
every test case that has been previously generated while testing
a variation of the program will no longer be executed. The
experimental results showed that the tool is able to detect
more unique crashes and a higher percentage of total paths
in a given amount of time when compared with AFL.

ACKNOWLEDGMENT

This work was partially supported by the ITEA3 Eu-
ropean through the XIVT project (I3C4-17039/FEDER-
039238), and national funds through FCT with reference
to SEAL project (PTDC/CCI-INF/29058/2017, LISBOA-01-
0145-FEDER-029058, POCI-01-0145-FEDER-029058), and
LASIGE Research Unit (UIDB/50021/2020).

REFERENCES

[1] CVE, “CVE Details. The ultimate security datasource,”
https://www.cvedetails.com/browse-by-date.php.

[2] WhiteHat Security, “Application Security Statistics Report. The case for
DevSecOps,” Nov. 2017.

[3] M. Zawlewski, “American Fuzzy Lop (AFL) Fuzzer,”
http://lcamtuf.coredump.cx/afl/. 2017, [Accessed in 01/03/19].

[4] ——, “AFL Technical Details,” http://lcamtuf.coredump.cx/afl/
technical details.txt.

[5] “Common Weakness Enumeration,” https://cwe.mitre.org/data/index.htm/.
[6] X. Jia, C. Zhang, P. Su, Y. Yang, H. Huang, and D. Feng, “Towards

Efficient Heap Overflow Discovery,” in Proceedings of the USENIX
Security Symposium (USENIX Security 17), Aug 2017, pp. 989–1006.

[7] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SOK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in Proceedings of the IEEE Symposium on Security and
Privacy, May 2016, pp. 138–157.

[8] J. Cai, P. Zou, J. Ma, and J. He, “A Taint Based Smart fuzzing Approach
for Integer Overflow Vulnerability Detection,” in Proceedings of the
IEEE International Conference on Software Testing, Verification and
Validation, 2014.

[9] I. Medeiros and M. Correia, “Finding vulnerabilities in software ported
from 32 to 64-bit CPUs,” in Proceedings of the International Conference
on Dependable Systems and Networks (DSN), (fast abstract), 2009.

[10] N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, Jun
2007, pp. 89–100.

[11] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robert-
son, F. Ulrich, and R. Whelan, “LAVA: Large-Scale Automated Vulner-
ability Addition,” in Proceedings of the IEEE Symposium on Security
and Privacy (SP), May 2016, pp. 110–121.

[12] M. Muench, J. Stijohann, F. Karglz, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing
embedded devices,” in Proceedings of the Network and Distributed
Systems Security Symposium, Feb, pp. 18–21.

[13] V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos, “Memory
Errors: The Past, the Present, and the Future,” in Proceedings of the
Research in Attacks, Intrusions, and Defenses, D. Balzarotti, S. J. Stolfo,
and M. Cova, Eds., September 2012, pp. 86–106.

[14] A. Takanen, “Fuzzing for Software Security Testing and Quality Assur-
ance,” Tech. Rep., June 2008.

[15] P. Oehlert, “Violating assumptions with fuzzing,” in IEEE Security and
Privacy, vol. 3, Number 2, no. 2, March 2005, pp. 58–62.

[16] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, “Scheduling Black-box
Mutational Fuzzing,” in Proceedings of the ACM SIGSAC Conference
on Computer, Communications Security, Nov 2013, pp. 511–522.

[17] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing
for Security Testing,” Queue, vol. 10, no. 1, pp. 20–27, jan 2012.

[18] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of
constraints: Whitebox fuzz testing in production,” in Proceedings of the
International Conference on Software Engineering (ICSE), May 2013,
pp. 122–131.

[19] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawkeye:
Towards a Desired Directed Grey-box Fuzzer,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security,
Oct 2018, pp. 2095–2108.

[20] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations,”
in Proceedings of the USENIX Security Symposium (USENIX Security
13), Aug 2013, pp. 49–64.

[21] S. Karamcheti, G. Mann, and D. Rosenberg, “Adaptive Grey-Box
Fuzz-Testing with Thompson Sampling,” in Proceedings of the ACM
Workshop on Artificial Intelligence and Security, Oct 2018, pp. 37–47.

[22] “libfuzzer,” https://llvm.org/docs/LibFuzzer.html, 2018.
[23] “honggfuzz,” https://github.com/google/honggfuzz/. 2018, [Accessed in

21/02/19].
[24] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and

D. Brumley, “Optimizing Seed Selection for Fuzzing,” in In Proceedings
of the USENIX Security Symposium, Aug 2014, pp. 861–875.

[25] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier,
“Toward Large-Scale Vulnerability Discovery Using Machine Learning,”
in Proceedings of the ACM Conference on Data and Application Security
and Privacy, ser. CODASPY ’16, Mar 2016, pp. 85–96.

[26] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating Fuzz
Testing,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, Oct 2018, pp. 2123–2138.

[27] “afl-cov,” 2018, https://github.com/mrash/afl-cov.

10

