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I. INTRODUCTION

Most web applications are compromised due to vulnerable
source code [1]. Static code analysis tools that are often used to
find security vulnerabilities in code have two main problems:
they are language-specific, and they have to be programmed,
or at least configured manually, to deal with new types of
vulnerabilities.

This paper explores the development of a static analysis
tool called MERLIN (Multi-language wEb vulneRabiLity de-
tectIoN) that aims to solve these two problems by detecting
vulnerabilities in code written in different languages and by
learning how to detect vulnerabilities.

MERLIN searches for input validation vulnerabilities which
are the most common web application security weaknesses
[1]. Specifically, at the current state we consider the following
classes of vulnerabilities: SQL injection, XSS, remote and
local file inclusion, path traversal, source code disclosure,
operating system and PHP command injection. To detect
these vulnerabilities, MERLIN performs data flow analysis:
it examines how data flows through the code of the program,
considering the code semantics. Data flow analysis is a com-
mon technique used to perform static code analysis (e.g., RIPS,
PHOSPHOR, WAP). Nevertheless, static code analysis tools
that use data flow have limitations, such as developers having
to code their knowledge about vulnerabilities.

MERLIN supports several programming languages by first
translating source code written in a high-level language into
intermediate code. Currently the tool supports web code writ-
ten in Java and PHP and translates it into Jimple, part of
the Soot framework [3]. MERLIN uses a machine learning
classifier to learn how to detect vulnerabilities from a large
set of examples.

During implementation of this tool we faced several chal-
lenges. The first challenge was to find an intermediate code
language suitable to represent different high-level languages.
We ended up selecting Jimple that is obtained from Java byte-
code, which is trivially obtained from Java source code. The
second challenge was translation from PHP to Java bytecode,
since the main goal of the software available for this purpose
was not to produce bytecode, but to execute it. Another major
challenge was to interpret functions in the intermediate code.
Web applications written in languages other than Java do
not preserve the original symbols in the intermediate code.
Thus, it was necessary to perform an extensive analysis of the
intermediate code, so that the tool is able to correctly interpret
and, process the symbols, and specifically function names,

resulted from the compilation. Yet another challenge is the
need to include configuration files with sensitive sinks, sources
and sanitization functions for each programming language
considered.

II. APPROACH

MERLIN supports web applications written in different
languages. We chose to focus on web applications written in
PHP and Java for now, and are considering other program-
ming languages for the next phase. These two programming
languages are among most popular programming languages
for developing web applications.

Figure 1 shows the architecture of the tool. It consists of
two main modules: the Code Analysis Module that processes
source code and detects candidate vulnerabilities in interme-
diate code; the Vulnerability Detection Module that classifies
vulnerabilities using machine learning.

A. Code Analysis Module
Initially, the Bytecode Converter (1a)(1b) modules receive a

web application as input and compile it to Java bytecode. The
bytecode converter used depends on the language in which the
web application is written: javac when processing Java code,
JPHP when processing PHP code. Thereafter, the bytecode
is converted to Jimple, an intermediate representation, by the
submodule Intermediate Language Converter (2) using the
Soot framework. The Soot framework is also used to build
control flow graphs (CFGs) in the submodule CFGs Builder
(3).

Fig. 1. Architecture of the MERLIN tool considering PHP and Java code.

Then, the Jimple code and the generated CFGs are analyzed
by the submodule Potentially Vulnerable Code Slice Gener-
ator (4) along with a configuration file that provides entry



points (places where inputs enter the program), sanitization
functions (that cleanup dangerous inputs) and sensitive sinks
(functions that may be exploited by malicious input). The
submodule analyzes all functions and uses the configuration
file to collect potentially vulnerable code slices. A code slice
contains sensitive sink, the variables passed to the sensitive
sink and all statements semantically related in terms of data
dependency or control dependency. Whenever there is a call
to a function/method of the same module or another module,
MERLIN processes the function/method and propagates the
data flow through all parameters. Furthermore, it stores the
return value of the function if applicable. Thus, MERLIN
performs an inter-procedural, global and context sensitive
analysis.

When processing web applications written in languages
other than Java, an auxiliary submodule may be needed to
help interpret compilation of source code to Java bytecode.
This happened with web applications written in PHP, and it
was necessary to add an extra submodule (4a) to interpret
functions generated by the JPHP tool that transforms PHP
code into Java bytecode instructions.

B. Vulnerability Detection Module

Attribute Extractor (5) receives the processed potentially
vulnerable code slices and produces attribute vectors. Based
on the set of attributes used in WAP [2], we chose to
use 22 attributes which are related with the presence of
vulnerabilities. The attributes chosen include the following
categories: natures of input sources, types of sensitive sinks,
input sanitization methods, string manipulation, validation and
encoding functions.

Classifier (6) uses the attribute vector to classify the code
as vulnerable or not vulnerable. Initially, we considered 7
classifiers of the Graphical/Symbolic, Random Forest, Proba-
bilistic, and Neural Networks classes, implemented in Python
libraries. We trained the classifiers with a set of code samples
to extract knowledge about the vulnerabilities and evaluated
which machine learning classifier achieved the best results.
After these stages, we concluded that SVM has the best
performance and it is the one used in MERLIN.

III. EVALUATION

So far MERLIN has processed more than 750 thousand
lines of code with vulnerabilities from all categories. We
ran MERLIN with 17653 files from the SRD database
(https://www.nist.gov/srd): 5064 Java; 12589 PHP. Further-
more, we also used a few code samples written by us to train
and test the tool. Therefore, the classifiers were trained with a
total of 42011 code slices and tested with 18004 code slices.
The classifier that obtained the best results was SVM among
the seven classifiers used. The SVM achieved a precision of
94.6%, a recall of 98.16% and a f-score of 96.24%.

We also verified MERLIN’s ability to correctly process in
the same way web applications written in Java and PHP. In
order to verify this, we ran the tool with web applications
written in Java and PHP with the same types of vulnerabilities

(a) Code sample in PHP

(b) Code sample in Java

Fig. 2. Examples of vulnerabilities detected by the tool.

TABLE I
ANALYSIS OF SRD AND REAL WORLD WEB APPLICATIONS

webapp language #loc #files #vuln
SRD Java/PHP 604,227 17653 12,126

DVWAP PHP 14,895 353 38
multidae PHP 142,515 919 225
bWapp PHP 24,070 198 192

wackopicko PHP 1,916 48 65
Java Vulnerable Lab Java 1,795 60 158

HackMe Java 824 17 27
Total Java+PHP 790,242 19,248 12,831

and with similar sanitization. An example is shown on the
Figure III where both code samples are vulnerable to SQLi
and as a result the tool was able to correctly identify the
vulnerabilities in both code samples.

The tool was also tested with real world web applications
written in Java and PHP which contained seeded vulnerabili-
ties. The results are summarized in Table I. The columns rep-
resent respectively: the web applications analysed, the number
of lines of code processed, the number of files processed and
the number of vulnerabilities found by the tool.

IV. CONCLUSION

We developed a tool to improve security in web applica-
tions, by detecting vulnerabilities in web applications written
in different languages using machine learning. The tool has
produced promising results. Next we will compare the results
achieved by this tool with other tools that detect vulnerabilities
in Java bytecode and in source code. Moreover, we will also
test the tool with more real world web applications and with
more vulnerability categories.
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