Towards a Deep Learning Model for Vulnerability
Detection on Web Application Variants

Ana Fidalgo, Ibéria Medeiros, Paulo Antunes, and Nuno Neves
LASIGE, Faculdade de Ciéncias, Universidade de Lisboa, Portugal
afidalgo@lasige.di.fc.ul.pt, imedeiros @di.fc.ul.pt, pdantunes @fc.ul.pt, nuno@di.fc.ul.pt

Abstract—Reported vulnerabilities have grown significantly
over the recent years, with SQL injection (SQLi) being one of the
most prominent, especially in web applications. For these, such
increase can be explained by the integration of multiple software
parts (e.g., various plugins and modules), often developed by
different organizations, composing thus web application variants.
Machine Learning has the potential to be a great ally on finding
vulnerabilities, aiding experts by reducing the search space or
even by classifying programs on their own. However, previous
work usually does not consider SQLi or utilizes techniques hard
to scale. Moreover, there is a clear gap in vulnerability detection
with machine learning for PHP, the most popular server-side
language for web applications. This paper presents a Deep
Learning model able to classify PHP slices as vulnerable (or
not) to SQLi. As slices can belong to any variant, we propose
the use of an intermediate language to represent the slices and
interpret them as text, resorting to well-studied Natural Language
Processing (NLP) techniques. Preliminary results of the use of
the model show that it can discover SQLi, helping programmers
and precluding attacks that would eventually cost a lot to repair.

Index Terms—web application vulnerabilities, vulnerability
detection, natural language processing, deep learning, software
security.

I. INTRODUCTION

Web applications have become central in everyone’s lives.
We use them to check the email, to make transactions, to
socialize, and much more. As their role grew, so did their
appealing to hackers, and the number of vulnerabilities has
continuously grown year by year. Reported vulnerabilities
have significantly grown over the recent years [1], with SQL
injection (SQLi) being one of the most prominent, especially
in web applications, and appearing on Top 10 of OWASP
[2]. Furthermore, SQLi is considered to be one of the most
devastating web vulnerabilities, as they allow intruders to ac-
cess private data, and successful attacks cost companies much
money for repairs. Also, SQLi vulnerabilities are relatively
easy to exploit, making them even more appealing to attackers.
For example, they represent two-thirds (65%) of cyberattacks
of all web attacks [3].

Such increase of SQLi vulnerabilities can also be explained
by the integration of multiple software parts (e.g., various
plugins and modules), often developed by different organiza-
tions, composing thus web application variants. For instance,
WordPress plugins are well-known for their bad security
shape, as shown on works of Nunes et al. [4] and Medeiros
et al. [5].

Several tools employ different techniques for detecting web
application vulnerabilities, being the most popular those that
rely on static analysis [6]-[9], which searches vulnerabili-
ties by analyzing the source code of the applications, and
fuzzing [10]-[13], which performs attacks against a target
application by injecting malicious inputs and verifies if they
are succeeding well (i.e., exploiting any vulnerability existent
in the application). However, both techniques have presented
limitations which underling the production of false positives
(inexistent vulnerabilities) and false negatives (vulnerabilities
not detected), respectively. Recently, Machine Learning (ML)
has emerged as a technique to discover vulnerabilities. Some
tools resort to data mining [14], [15], which extract features
from the source code of the applications that can be related to
vulnerabilities and predict if applications contain vulnerabili-
ties, while others employ Natural Language Processing (NLP)
algorithms [16] and neural networks [17], [18] to process the
application code, and output if it contains flaws. Although the
advances made with ML models have made the first steps on
accurate and precise detection of vulnerabilities, there is still
space for improvements in this field.

In this paper, we propose a novel approach leveraging
Deep Learning (DL) and NLP to classify PHP slices as
vulnerable (or non-vulnerable) to SQLi. Although PHP is the
most popular server-side language for web applications [19],
the detection of software vulnerabilities in PHP, through ML,
is still relatively unexplored. We process PHP code slices in
their opcode format that is similar to the Assembly opcodes
of C/C++, and is considered an intermediate language. This
approach allows us to look closer to the internal structure of
the language, which can help in the classification task we aim
to solve. Moreover, as slices can belong to any web application
variant, the use of an intermediate language to represent
them can facilitate the analysis transversality between variants.
Furthermore, this intermediate language has not yet been used
to solve our task.

We use DL and NLP state-of-the-art methodologies to
propose a model to solve the task. We start by using DL
models, such as Long Short-Term Memory (LSTM) layers,
that take into consideration the context of each opcode. These
are commonly employed to solve NLP tasks and were used
in some works to detect vulnerabilities in other programming
languages [20] [17] [21]. However, to the best of our knowl-
edge, they were never used to process neither PHP code or
opcode.

In the model we propose, the vulnerability detection process
starts by representing each PHP opcode as an embedding
vector that is trained along the rest of the parameters. Next, the
model uses an LSTM, Dropout, and Dense layers, outputting
the probability of the slice being vulnerable to SQLi. Our
approach uses a dataset retrieved from the Software Assurance
Reference Database (SARD)', which provides PHP test cases
of both vulnerable and non-vulnerable to SQLi. Each test
case is composed of a code slice that starts in an entry point
(instruction that receives user-defined input, like $_GET) and
finishes in a sensitive sink (a function, like mysqli_query, that,
when executed with malicious input, may cause undesired be-
havior, such as giving access to private data to an unauthorized
person).

We evaluate the model with various hyperparameter config-
urations for different DL optimizers, and the results showed
that the model can discover SQLi, helping programmers and
precluding attacks that would eventually cost a lot to repair.

The contributions of the paper are: 1) the analysis of PHP
web applications in the intermediate PHP opcode language,
2) a DL model that accurately classifies PHP opcode slices
as SQLi vulnerable or non-vulnerable, 3) a dataset of PHP
opcode slices, 4) pre-trained embedding vectors for each PHP
opcode, and 5) an experimental evaluation providing different
assessments of different hyperparameter configurations.

The outline of this paper is as follows. Section II introduces
some background information on vulnerabilities and DL in the
context of NLP. In Section III, a comparison with previous
work and ours is made. In Section IV, the methods we use,
the dataset we composed, the model and how to evaluate it
are presented. Section V presents the experimental results for
the models already investigated, and Section VI concludes the

paper.
II. BACKGROUND
A. Web Vulnerabilities

Vulnerabilities are flaws present in a system. When an
attacker exploits them, he can breach some security policy,
and their impact can cost a significant amount of money to
the organization. Over the last few years, with the increasing
importance of the Internet and web applications being widely
used, the number of vulnerabilities has grown exponentially
[22]. According to the OWASP Top 10 of 2017 [2], the most
popular web vulnerability classes are:

1) Injection,

2) Broken Authentication

3) Sensitive Data Exposure

4) XML External Entities (XXE)

5) Broken Access Control

6) Security Misconfiguration

7) Cross-Site Scripting (XSS)

8) Insecure Deserialization

9) Using Components with Known Vulnerabilities

10) Insufficient Logging&Monitoring

Uhttps://samate.nist.gov/SARD/index.php

The number one web vulnerability class is called Injection.
Injection happens whenever malicious data is sent to a web
application, and then an interpreter processes it as part of
a command or query (e.g., SQL query). This allows the
attacker to trick the interpreter into executing unintended
commands or accessing data without proper authorization.
An interpreter can be, for instance, accessed by a function
of the programming language (e.g., mysqli_query on PHP)
that receives the injected code as an argument to be included
in a query. Injections are easy to exploit - the attacker must
only insert appropriate strings to exploit the target interpreter,
usually through the addition of meta characters -, and have a
high impact on the system, making them particularly appealing
to attackers. So, the best way to prevent injection vulner-
abilities is by guaranteeing that commands and queries are
not tainted (compromised) by malicious data. This approach
can be made, preferably, by utilizing secure APIs or, if not
possible, escaping special characters [9].

There are several types of injections, such as command line,
SQL, LDAP, and XML. In this work, we will look at SQL
Injection (SQLi) only.

According to Clarke [23], SQLi is one of the most devas-
tating vulnerability classes. Anytime an application gives an
attacker the chance to control SQL queries that it passes to a
database, the software is vulnerable to a SQLi vulnerability.
This problem is not restricted to web applications, meaning
that any system that uses dynamic SQL statements to commu-
nicate with a database, like some server-client systems, can be
prone to this sort of vulnerability.

In our work, we chose to detect SQLi vulnerabilities in
PHP code, since PHP is the server-side high-level language in
which the majority of web applications are written. According

to W3Tech [19], 79% of web applications are written in PHP.

Stainted = $_SESSION|[’UserData’];

1
2
3 if (filter_var(Stainted, FILTER_VALIDATE_EMAIL))
4 $t = Stainted ;

5 else
6 $t="";
7

o

Sty

'user’,

Squery = sprintf ("SELECT » FROM ’%s’",
9 $conn = mysgl_connect (' localhost’,
10 mysgl_select_db (' dbname’);
Il $res = mysqgl_query ($query) ;

"pass’);

Listing 1: Example of a PHP slice vulnerable to SQLi.

The PHP example depicted in Listing 1 is an adaptation of
a SARD vulnerable sample. On line 1, exterior data enters the
program through the global array $_SESSTION, and it is stored
in the $tainted variable. Next, the $tainted value passes
through a filter that indicates whether its format is according to
the FILTER_VALIDATE EMAIL (line 3). This filter, however,
does not escape characters like ”’” and ” ”. An attacker could,
for example, give as input a string in the format ”’<malicious
query>’@gmail.com”, where <malicious query> would be
anything following the SQL syntax. On line 8, a query string
is constructed with the given input. This way, the attacker
might get access to private data stored in Sres (line 11),
which stores the result from the execution of the query in

the database. Therefore, the slice has a SQLi vulnerability.
This vulnerability can be fixed by escaping special characters
besides validating the email format.

B. Deep Learning for Natural Language Processing

ML excels in problems that humans can solve intuitively
but have difficulties formalizing. For instance, it is easy for a
human to distinguish between a dog and a cat. Nonetheless,
it is hard to exhaustively list all the differences between the
two animals. Because of that, these problems are harder for
machines to tackle. In many ML models, such as Logistic
Regression, data representation is preponderant for model per-
formance - it is imperative to gather and select the appropriate
features which will be used to represent each data instance.
In the previous example, if we used the number of legs as a
feature, we would probably not be able to distinguish the two
species, but maybe a Boolean feature representing whether the
animal has pointy ears would be more useful. For many tasks,
it is hard to decide which representation to use though.

In DL models, instead of specifying the features, it is
possible to learn them together with the main task. In our
example we could simply use the pixels of pictures of dogs
and cats, saving a lot of effort thinking which features would
be better to distinguish the two animals. In these cases, DL
models are good alternatives. DL models are constituted by
multiple layers. Each layer receives as input the output of the
previous layer and applies some transformation to the input.
By having multiple layers, the model can learn more complex
and useful concepts, based on simpler and broader ones (from
previous layers) [24].

DL models, like any ML model, have an implicit cost func-
tion they intend to minimize, i.e., they are minimization tasks
for which they need an optimization algorithm. Normally,
neural network optimizers are based on the Stochastic Gradient
Descent (SGD). There are three SGD-based optimizers that are
frequently used: 1) ADADELTA [25], which uses a dynamic
learning rate (1r) computed per-dimension, 2) RMSProp [26],
which generates updates using a re-scaled gradient, and 3)
ADAM [27] that generates updates with a running average of
the gradient.

NLP deals with natural language data. Because of the data
characteristics, namely lack of structure, ambiguity, discrete-
ness, and sparseness [28], it is often hard to find a suitable
representation for the desired task, making DL methods very
popular in the field [29], [30].

There are two widely used components in DL for NLP:
Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) [28]. These are not standalone layers but
are important as feature extractors. CNN is a type of feed-
forward network that can extract local features from the data.
RNN architectures take into account both word ordering and
all past words in a sequence. They are excellent for sequential
data and have achieved state-of-the-art results in many NLP
fields [31], [32].

CNN and RNN layers are often preceded by an embedding
layer, which maps discrete symbols into continuous vectors,

solving the sparsity problem of natural language data. Also, it
is common to feed the output of these components to a feed-
forward component that learns to perform the desired task,
like classification [28].

Recently, some new approaches have achieved exciting
results, such as the combination of attention and RNN or CNN
[33], [34] and attention only, with resort to transformers [35],
[36].

1) Comnvolutional Neural Networks: CNNs are a type of
feed-forward network that, due to its architecture, is great
at finding informative local patterns in long sequences with
different sizes. The main idea behind CNN layers is to apply
a non-linear learned function (filter) to a window of size k.
Each time step, the window slides, until covering the whole
sequence, and produces a scalar value that represents the
tokens from that time window [28]. We can apply n filters
to each window, which results in an n dimensional vector that
characterizes that window. Finally, the resulting vectors are
combined through a pooling operation into a single vector,
that represents the whole sequence. There are several pooling
operations, however, the most common are:

e Max Pooling: takes the maximum value across each

feature;

e Average Pooling: takes the average of each feature;

o K-max Pooling: for each feature, keeps the k highest val-
ues, preserving their order, and concatenates the resulting
vectors.

CNN cannot, however, extract the global order of the input

- only local order can be represented. Hence, this architecture
is specially good in solving computer vision tasks, like image
classification and object recognition [37], [38].

2) Recurrent Neural Networks: RNNs are networks that
maintain a short-term memory through an internal state space.
The state space can be seen as a trace of previously processed
input and enables the representation of dependencies between
tokens that may be close or further apart [39]. The first deep
learning language models used a feed-forward network called
tapped delay line (TDL). These networks receive as input the
token at position ¢ and the previous w tokens, where w is pre-
determined. Sejnowski et al. [40] trained a TDL network to
pronounce written English words. This approach, however, has
a clear disadvantage: if w is too small, the model might miss
interesting patterns, and if it is too long, it will be overloaded
with parameters and may over-fit. In addition, each token will
be independently processed several times, in different time
steps [39].

RNNs take into account all previous inputs in a more
efficient fashion, and without the trouble of tuning the hy-
perparameter w. There are several kinds of recurrent units.
The simplest one is called Simple Recurrent Neural Network
(SRNN) [41], and its internal state has a single recurrent layer
that receives the output of the previous state and applies an
activation function. Bengio et al. [42] noticed that even though
SRNNs can learn short-term dependencies, long sequences led
to vanishing or exploding gradients, making it difficult for the
model to learn them.

Fig. 1: Scheme of an LSTM, showing the units ¢ — 1, ¢t and ¢ + 1.

The LSTM unit [43] was developed to tackle this issue.
LSTM models can maintain the error flow constant by intro-
ducing two gates — input and forget — that control how much
information they let in [44]. The input gate i; controls the
input x;, whereas the forget gate f; controls the output of
the previous unit, y;—1. These gates produce a value between
0 and 1 (0 means they do not let anything pass and 1 means
everything passes). Equations (1) show how to compute ¢; and
ft. In equations i; and f;, respectively, U;, W; and b; are the
weight matrices and the bias for the input gate, and Uy, Wy
and by are the weight matrices and bias for the forget gate.

iy = activation(dot(y,—1, U;) + dot(xy, W;) + b;)
ft = activation(dot(y;—1,Uy) + dot(xy, W) + by)

Fig. 1 shows how the different parts of an LSTM unit
(represented by the grey circles) work. Each unit has a data
flow c; that carries information across time steps. In addition
to the gates, there is also a simple hidden layer component,
k:, whose equation is given by Equation (2), in which Uy, Wy,
and by represent the weight matrices and bias for the hidden
layer.

(D

k: = activation(dot(ys—1, Ug) + dot(xe, Wi) + b)) (2)

The next carry data flow c;1; is computed by combining
¢t, 1, fr and ky, expressed by Equation (3):

Cey1 =t ¥ ke +cp x fr 3

Finally, the output of the unit, which is also the state
of the next unit, is calculated by Equation (4), where c; is
combined with the input x; and the state y;_;, via a dense
transformation. Analogously to Equations (1) and (2), here we
also have weight matrices U,, W, and V,, and a bias vector
by.

Y = activation(dot(y,—1,Uy)+
dot(z¢, W) + dot(ct, V) + by)

In the last few years, other recurrent units have appeared.
The Gated Recurrent Unit (GRU) [45] is a more recent RNN

“4)

[a, b, c, d] [d, ¢, b, &

|

[a, b, c, d]

Fig. 2: Scheme of a BiRNN.

very similar to the LSTM, but it was developed to be cheaper
to run. It may, however, not have as much representational
power as an LSTM layer [44]. The Bidirectional Recurrent
Neural Network (BiRNN) [46] can learn based not only in
past but in future information as well, widening the context
considered. Fig. 2 shows what happens inside a BiRNN layer.
The BiRNN feeds into an RNN the input vector, and the
reversed input vector to another RNN. In the end, the output
is the combination of the outputs of both RNNs.

3) Input Representation: In NLP, it is necessary to repre-
sent text data as numeric vectors to be easily manipulated.
The first thing to do is to decide the granularity of the
representation: a vector may represent a sentence/sequence,
a token (word or other character sequence separated by a
space), a character, between others. For example, suppose it
represents a token. There are two main representation methods:
one-hot vectors and embedding vectors. One-hot vectors are
binary vectors where only one entry has value 1. In one-
hot representations, each feature corresponds to a token and
its value to whether the token is that feature’s token. This
results in a binary sparse vector with as many attributes as

words in the vocabulary. This form of representation has been
known to degrade the performance in neural network models
[28]. On the other hand, embedding vectors are continuous
representations in a lower-dimensional space. They can capture
similarities between tokens, allowing the model to treat tokens
with similar embedding representations in a similar way [28].
Also, using embedding vectors, we can choose the size and
tune it to improve the model’s performance.

The concatenation of these representations forms a matrix
of parameters, which may be:

o pre-trained: there are specific models for embedding
training (e.g., Word2vec [47] and GloVe [48]) that can be
applied on a broader dataset. For instance, if we intend
to classify English news as fake or not fake, we can use
a large corpus of English documents from multiple areas
to grasp better each word context, and then use the pre-
trained embeddings on our model;

e fixed or dynamic: when dynamic embeddings are used, we
allow the matrix of representations to change its values
during training. This is always the case for embeddings
that are not pre-trained. If we choose to pre-train the
representations, however, we may want them to adapt to
our data (and use the dynamic approach) or simply use
them as they are (with the fixed approach).

Fig. 3 shows two heat maps for the encodings of the
opcodes of our data, one-hot on the left and embedding on
the right, where each horizontal “’line” represents one opcode.
It is clear from the figure that the one-hot representation
requires a higher dimensional space, as it always needs as
many features as unique tokens (vocabulary size). In addition,
it is a sparse representation - image (a) shows a large light
grey area corresponding to values O and only the diagonal
has black dots that correspond to values 1. The embedding
image is dense and needs fewer features, since each feature is
more meaningful. This also means the model will have fewer
parameters, which helps prevent over-fitting.

Word2vec is a popular model used to train word embed-
dings. There are two Word2vec approaches, the Continuous

(b) Embedding encod-
ing

(a) One-hot encoding

Fig. 3: Heat map for one-hot and embedding encodings of the
opcodes.

CBOW Model

X

|

Projection Layer

|

x1-2 ‘xt-1 ’Xl+1 ‘xt+2

Skip-Gram Model

Kooy X XX

127718

|

Projection Layer

|

X,

12

Fig. 4: High level view of both variants of the Word2vec
model.

Bag-Of-Words (CBOW) model and the Continous Skip-Gram
model. They are both composed of a projection layer (a simple
linear layer). However, the CBOW model tries to predict the
missing word given a context while the Skip-Gram tries to
predict the context given a word [49]. Normally, the second
model achieves better results and it is the one generally used.
In Fig. 4 there are the two models diagrams. As we can see,
the CBOW model receives the context x;_2, Tt—1, Tt41, Te+2,
with window size equal to 2, of the word x; and tries to
predict it. On the other hand, the Skip-Gram model receives
the word z, as input and tries to predict its context. The main
advantage of these models is that they are able to grasp the
semantics of the words. For instance, Equation (5) shows the
power of Word2vec in finding syntactic and semantic word
relationships.

vee(” Madrid”) — vec(” Spain”) + vec(” France”)

~ vec(” Paris”),

(&)

III. RELATED WORK

For some years now, ML has been used as a component
in vulnerability detection models. It started as a support
mechanism to automatize some parts of the task of finding
vulnerabilities. For instance, Yamaguchi, Lindner and Rieck
[50] use Principal Component Analysis (PCA) to create vector
representations that describe API usage patterns in the code.
Expert analysts then study the presence of vulnerabilities
through these vectors and classify them. Another approach
applies taint analysis to PHP code to extract possible vulnera-
bilities [14]. Next, they apply ML models to classify them as
vulnerable or not. Here, the ML models help diminish false
positives, a well-known problem of static analysis.

More recently, a few vulnerability detection models ap-
peared that rely on ML for the classification task. Medeiros,
Neves and Correia [51] extract code slices from PHP programs
and translate them into an intermediate language developed
by the authors. Finally, these translations are classified by a
Hidden Markov Model to determine if they are vulnerable. A
potential limitation of this approach is that the intermediate
language used may simplify the code and loose insights about
the computation behind it. Our ”Assembly-like” intermediate
language can decompose complex functions into simpler ones,
exposing how they are executed and their interconnections
inside the program. At the same time, it allows us to deal
with a simpler language without the complex semantic of the
high level program language.

Some works have used NLP techniques, such as Word2vec,
to pre-train the embedding vectors [17], [52]. This allows input
vectors to have semantic information embedded in them. Pre-
training embedding vectors should be done in a large dataset,
not necessarily the same used for the main task. Because it
does not have to be labeled, it is usually easier to construct.
This approach is quite relevant, especially when the available
dataset is small, as it happens in our case.

An interesting approach is suggested by Russel et al. [21],
where the authors represent the data combining sentiment
analysis with a CNN, and function level classification with
an RNN. In the end, they classify the whole program using a
Random Forest. Although it is an interesting work, they use a
dataset of C/C++ programs, which are not prone to the same
kind of software vulnerabilities as web applications.

In the related field of malware detection, Guo et al. [20]
developed a blackbox mixture model to interpret DL. models.
Although it is not in the scope of our work, it is an important
subject to study in the future, since interpretability is essential
in vulnerability detection and DL is quite hard to explain.

To the best of our knowledge, the way we address this
task is new and has never been tried before. Previous work
is either on other languages that do not suffer the same types
of vulnerabilities [17], [21], use methods that do not take
into account the order of each token [52], or do not use an
intermediate language easily scalable and flexible [51].

IV. SOLUTION PROPOSAL

We aim to classify PHP slices as SQLi vulnerable or non-
vulnerable, by processing them in an intermediate language,
composed of their respective opcodes. For that matter, we
propose a DL model composed of Embedding, LSTM and
Dense layers, following the guidelines presented in Section
II-B. This is a novel approach that has not yet been used in
the context of PHP vulnerability detection.

In this section, we will present the methodology used. We
start by defining the dataset and the necessary preprocessing.
Next, we introduce the network we are investigating, providing
details for each layer, and the methods used to evaluate the
model, including the metrics we considered.

A. PHP Programs Dataset

This section aims to present how we built our dataset,
starting with a set of PHP programs and transforming them
in their opcodes representation, generating thus a new dataset
that will serve our DL model.

1 <?php
2
3 Stainted = S_SESSION['UserData'];

4
51if (filter_var(Stainted, FILTER_VALIDATE_EMAIL))
6 St = Stainted ;

7 else
8 st=""3;
9

10 Squery = sprintf("SELECT * FROM '%s'", St);

11

12 //flaw

13 Sconn = mysql_connect('localhost', 'mysql_user’', 'mysql_password');

14 mysql_select_db('dbname') ;

15 echo "query : ". Squery ."<br /=<br /=" ;

16

17 Sres = mysql_query(Squery); //execution

18

19 while(Sdata =mysql_fetch_array(Sres)){

20 print_r(Sdata) ;

21 echo "<br /=" ;

22 }

23 mysql_close(Sconn);

24

25 7>
(a) PHP code slice

8 FETCH_R
1 FETCH_DIM_R
2 ASSIGN
3 INIT_FCALL
4 SEND_VAR
5 SEND_VAL
6 DO_ICALL
7 IMPZ
8 ASSIGN
9 IMP
8 10 ASSIGN
10 11 INIT_FCALL
12 SEND_VAL
13 SEND_VAR
14 DO_ICALL
15 ASSIGN
13 16 INIT_FCALL_BY_NAME
17 SEND_VAL_EX
18 SEND_VAL_EX
19 SEND_VAL_EX
20 DO_FCALL
21 ASSIGN
14 22 INIT_FCALL_BY_NAME
23 SEND_VAL_EX
24 DO_FCALL
15 25 CONCAT
26 CONCAT
27 ECHO
17 28 INIT_FCALL_BY_NAME
29 SEND_VAR_EX
38 DO_FCALL
31 ASSIGN
19 32 JMP
20 33 INIT_FCALL
34 SEND_VAR
35 DO_ICALL
22 36 ECHO
19 37 INIT_FCALL_BY_NAME
38 SEND_VAR_EX
39 DO_FCALL
48 ASSIGN
41 JMPNZ
23 42 INIT_FCALL_BY_NAME
43 SEND_VAR_EX
44 DO_FCALL
25 45 RETURN

(b) Opcode slice obtained with
the VLD tool

[82, 83, 40, 63, 119, 67, 131, 45, 40, 44, 40, 63, 67, 119, 131,
40, 61, 118, 118, 118, 62, 40, 61, 118, 62, 10, 10, 42, 61, 68,
62, 40, 44, 63, 119, 131, 42, 61, 68, 62, 40, 46, 61, 68, 62, 64]

(c) Numeric vector

Fig. 5: Example of a code slice and the successive transfor-
mations it suffers.

TABLE I: Vocabulary composed of VLD opcodes. The index of the opcode in position ¢, j is given by ¢ x5 + 7 + 1.

i\ji [[0 1 2 3 4

0 oov NOP ADD SUB MULT

1 DIV MOD SL SR CONCAT

2 BW_OR BW_AND BW_XOR BW_NOT BOOL_NOT

3 BOOL_XOR IS_IDENTICAL IS_NOT_IDENTICAL IS_EQUAL IS_NOT_EQUAL

4 IS_SMALLER IS_SMALLER_OR_EQUAL CAST QM_ASSIGN ASSIGN_ADD

5 ASSIGN_SUB ASSIGN_MUL ASSIGN_DIV ASSIGN_MOD ASSIGN_SL

6 ASSIGN_SR ASSIGN_CONCAT ASSIGN_BW_OR ASSIGN_BW_AND ASSIGN_BW_XOR

7 PRE_INC PRE_DEC POST_INC POST_DEC ASSIGN

8 ASSIGN_REF ECHO GENERATOR_CREATE mMP IMPZ

9 JMPNZ IMPZNZ IMPZ_EX JMPNZ_EX CASE

10 CHECK_VAR SEND_VAR_NO_REF_EX MAKE_REF BOOL FAST_CONCAT

11 ROPE_INIT ROPE_ADD ROPE_END BEGIN_SILENCE END_SILENCE

12 INIT_FCALL_BY_NAME DO_FCALL INIT_FCALL RETURN RECV

13 RECV_INIT SEND_VAL SEND_VAR_EX SEND_REF NEW

14 INIT_NS_FCALL_BY_NAME FREE INIT_ARRAY ADD_ARRAY_ELEMENT INCLUDE_OR_EVAL
15 UNSET_VAR UNSET_DIM UNSET_OBJ FE_RESET_R FE_FETCH_R

16 EXIT FETCH_R FETCH_DIM_R FETCH_OBJ_R FETCH_W

17 FETCH_DIM_W FETCH_OBJ_W FETCH_RW FETCH_DIM_RW FETCH_OBJ_RW

18 FETCH_IS FETCH_DIM_IS FETCH_OBJ_IS FETCH_FUNC_ARG FETCH_DIM_FUNC_ARG
19 FETCH_OBJ_FUNC_ARG FETCH_UNSET FETCH_DIM_UNSET FETCH_OBJ_UNSET FETCH_LIST

20 FETCH_CONSTANT GOTO EXIT_STMT EXT_FCALL_BEGIN EXT_FCALL_END
21 EXT_NOP TICKS SEND_VAR_NO_REF CATCH THROW

22 FETCH_CLASS CLONE RETURN_BY_REF INIT_METHOD_CALL INIT_STATIC_METHOD_CALL

ISSET_ISEMTY_VAR

ISSET_ISEMPTY_DIM_OBJ

SEND_VAL_EX

UNKNOWN[119] SEND_USER STRLEN
25 VERIFY_RETURN_TYPE FE_RESET_RW FE_FETCH_RW
26 DO_ICALL DO_UCALL DO_FCALL_BY_NAME
27 POST_INC_OBJ POST_DEC_OBJ ASSIGN_OBJ

DECLARE_CLASS
ADD_INTERFACE
HADLE_EXCEPTION
ADD_TRAIT
DISCARD_EXCEPTION
RECV_VARIADIC
COALESCE
FETCH_STATIC_PROP_W
UNSET_STATIC_PROP
FETCH_THIS
IN_ARRAY
FUNC_NUM_ARGS

DECLARE_INHERITED_CLASS
VERIFY_INSTANCEOF
USER_OPCODE

BINDTRAIS

YIELD

SEND_UNPACK

SPACESHIP
FETCH_STATIC_PROP_RW
ISSET_ISEMPTY_STATIC_PROP
UNKNOWN[185]

COUNT

FUNC_GET_ARGS

DECLARE_FUNCTION
VERIFY_ABSTRACT_CLASS
ASSERT_CHECK

SEPARATE
GENERATOR_RETURN

POW
DECLARE_ANON_CLASS
FETCH_STATIC_PROP_IS
FETCH_CLASSICAL_CONSTANT
ISSET_ISEMPTY_THIS
GET_CLASS

ISSET_EMPTY

SEND_VAR
DEFINED

FE_FREE

PRE_INC_OBJ

OP_DATA
RAISE_ABSTRACT_ERROR
ASSIGN_DIM

IMP_SET
FETCH_CLASS_NAME
FAST_CALL

ASSIGN_POW

DECLARE_ANON_INHERITED_CLASS

FETCH_STATIC_PROP_FUC_ARG
BIND_LEXICAL

SWITCH_LONG
GET_CALLED_CLASS

INIT_USER_CALL
TYPE_CHECK
INIT_DYNAMIC_CALL
PRE_DEC_OBJ

INSTANCEOF
DECLARE_CONST
ISSET_ISEMPTY_PROP_OBJ
DECLARE_LAMBDA_FUNCTION
JMP_SET_VAR

FAST_RET

BIND_GLOBAL
FETCH_STATIC_PROP_R
FETCH_STATIC_PROP_UNSET
BIND_STATIC
SWITCH_STRING

GET_TYPE

1) Raw Dataset: Stivalet and Fong [53] developed a PHP
test case generation tool’ to generate the SARD test cases.
Each sample is composed of a comment section labeling it,
and a code slice. The code slice starts with an entry point and
ends in a sensitive sink.

From SARD, we use as raw data 1362 SQLi test
cases, namely 858 vulnerable and 504 non-vulnerable. Non-
vulnerable instances are code slices where the user input is
correctly sanitized or validated. On the other hand, vulnerable
slices do not sanitize or validate the input correctly. Note
that 1) the input may be sanitized and still compromise the
application, and 2) the malicious input may be propagated
across the slice throughout the assignments to other variables.
These show the complexity of the task we intend to solve.

2) Data Transformation and Processing: Traditionally,
PHP uses a virtual machine engine called Zend * to compile
and run the programs. Zend transforms the PHP programs into
opcodes, which are then executed. A tool called Vulcan Logic
Dumper (VLD)* is able to intercept the opcodes processing
before they are executed, allowing them to be saved into a file.
This way, we gain access to an intermediate language repre-
sentation in which the original functions have been partitioned
into simpler ones and have a more restricted space. Another
advantage of analyzing programs in an intermediate language
is that it may be used for more than a high-level programming
language, turning the model fit for any programming language
that may be represented by this intermediate language.

We started by executing all examples on VLD, obtaining
a PHP opcode slice for each PHP slice. We also defined

2The tool is available in SARD
3https://www.zend.com/products/php-development-tools
“https://github.com/derickr/vld

the vocabulary composed of all valid opcodes used in VLD,
which will be useful when training the model. Table I lists
this vocabulary. Besides the PHP opcodes, we added a special
token to designate out of vocabulary tokens that may occur,
the OOV token. The index of the opcode in position (3, j)
(row, column) is given by expression ¢ * 5 + j + 1.

Since neural networks receive as input arrays of numerical
values, we created a numeric vector for each instance, by
mapping the opcodes to their corresponding index in the
vocabulary. Fig. 5 shows an example of how the numeric
vector (part (c)) is obtained from a code slice (part (a)) of
our dataset, which is transformed in the opcode slice by the
VLD tool (part (b)). As we can observe the first opcode of the
slice, FETCH_R, has index 82 (see Table I by applying the
expression 16 x 5+ 141 = 82), which is the first element of
the vector.

LSTM layers do not support different sized inputs. For that
reason, before training, we pad all smaller sequences with
0’s at the end so that all sequences have the same size as
the longest sequence in the training set. If a longer sequence
appears when evaluating the model, then we truncate it.

B. Model

Fig. 6 gives a high-level view of the model we propose.
The model is composed of a minimum of five layers that
work sequentially. It produces a final output, between 0 and 1,
indicating the probability of the sample being vulnerable. This
way, the input vectors go sequentially through the Embedding,
LSTM, Dropout, and Dense layers, suffering successive trans-
formations and producing the final output.

The LSTM + Dropout layers can be stacked n times to
increase the learning capacity of the model. Table II lists

TABLE II: Definition of each layer’s input, output and activation function.

Layer [[Tnput [Output [Activation
Embedding || MAX_LENGTH, 1 MAX_LENGTH, HIDDEN_SIZE;
LSTM; MAX_LENGTH, HIDDEN_SIZE; | HIDDEN_SIZE, | Tanh
LSTM; HIDDEN_SIZE; HIDDEN_SIZE;, | Tanh
Dropout; HIDDEN_SIZE;, 1 HIDDEN_SIZE;, 1 -
Dense HIDDEN_SIZE,,, 1 HIDDEN_SIZE,,, 1 ReLU
Dense HIDDEN_SIZE, | 11 Sigmoid
Input o pre-trained and dynamic: it follows the same idea as the

Embedding Layer
LSTM Layer 1

Dropout Layer 1

LSTM Layer n

Dropout Layer n

Output

Fig. 6: High level view of our model.

each layer’s input and output size, and activation function.
The first LSTM layer receives as input a matrix (of size
MAX_LENGTHxHIDDEN_SIZE) and outputs a vector (of
size HIDDEN_SIZEx 1), but the subsequent LSTM layers
simply transform vectors into other vectors. MAX_LENGTH
corresponds to the maximum sequence size we allow and
HIDDEN_SIZE,; is a predefined value that needs to be tuned
along with n, where ¢ € {1,...,n} and n € IN. The choice of
activation function of each layer follows the recommendations
of the Keras documentation [54] for the LSTM layer and of
Goodfellow, Bengio and Courville [24] for the Dense layers.
They state that the ReLU is the preferred activation function
for neural network layers and Sigmoid for output layers in
classification problems with two classes. Next, we present each
layer in detail.

1) Embedding Layer: The Embedding Layer maps tokens
to embedding vectors. We will investigate three embedding
approaches:

o dynamic: the matrix is initialized from a uniform distri-
bution [54] and its values are updated according to the
backpropagation algorithm and the training data [44];

o pre-trained and fixed: the embedding vectors for each
opcode are pre-trained using the word2vec skip-gram
model. Next, the vectors are used to initialize the weight
matrix. During training, the values will not change;

previous point but now we allow the values to change
during training, to adapt them to our task’s data.

Note that for the pre-trained approaches, we must build a
corpus from PHP applications that will be used as training
data for the Word2vec model.

2) LSTM Layer: After learning the embedding vectors for
each opcode, we want to learn patterns present in the opcode
slice. In the vulnerability detection task, the order of the
opcodes in the slice is very relevant. For that matter, we
chose to stack n LSTM layers, since they can produce output
vectors that encode information of previous opcodes and their
order. We started off with a single layer and then studied
the impact of adding additional layers, following Chollet’s
recommendations on how to balance under and over-fitting
in neural networks [44].

3) Dropout Layer: During training, this layer randomly
sets some entries of its input to zero, according to a given
probability (d). The goal of this approach is to introduce noise
in the model to prevent it from memorizing irrelevant patterns
that are learned by chance by the LSTM layer. At test stage,
the layer does not apply any transformation to its input [44].
Although it takes more time for the model to converge, neural
network models that have dropout layers can reduce over-
fitting further and improve their performance [55]. We decided
to add a Dropout layer after each LSTM layer of the model.

4) Dense Layers: The last two layers are fully-connected
feed-forward neural network layers. The first Dense Layer’s
role is to learn the relationship between the slice and the cor-
responding label (vulnerable or non-vulnerable). It transforms
the input in a vector with the same shape that grasps this
relationship. The last layer classifies the slice. It follows a
common configuration in classification problems, such as the
one we are solving, by transforming the input in a numeric
value between 0 and 1 through the Sigmoid activation function
[44]. In this context, the value represents the probability of
having an SQLi vulnerability in that code slice.

C. Evaluation

To evaluate the model, we applied a 70/30 random stratified
train-test split to the dataset, which maintains the percentage
of vulnerable/non-vulnerable samples in each set. The training
set is therefore composed of 953 samples and the test set of
409, where 63% are vulnerable and the rest non-vulnerable.
Furthermore, we applied to the training set a stratified 10-
fold cross-validation three times to each model. Applying this
technique allows us to 1) train and validate each model 30

times on 70% of the data, and 2) test the final model on 30%
of never-seen test data.

In classification tasks like the one we aim to solve, it is
common to measure how good the model is at generalizing,
based on the rate of correctly classified examples (known as
accuracy), the true positive rate (or recall), and the rate of true
positives given all predicted positives (known as precision).
Our goal is then to better balance these three metrics. Since we
train and validate each model 30 times, there will be 30 values
for each metric, allowing us to make better-informed decisions.
By having 30 values per metric, we can produce statistics that
are more robust and trustworthy than a single value, that could
easily be by chance and lead us to faulty conclusions. This
technique is even more relevant when working with a small
dataset, such as ours, where the variance is usually higher.

V. EXPERIMENTAL RESULTS

In this section, we will dive into the experiments performed
for the 1 LSTM layer model. We will begin by giving details
on the implementation. Next, we describe the methods and
decisions taken for the experiments, as well as the various
configurations tested in order to find the most suitable for our
task. We finally present the results obtained.

A. Implementation

We investigated the model with one block of LSTM +
Dropout layers. For that, we used the well-known Python
package Keras [54] to implement the various model configu-
rations. Keras provides a convenient and easy-to-use interface
for developing neural networks. It works as a wrapper for
the opensource Tensorflow package [56], which needs more
details to configure a model.

B. Configuration of the Experiments

Throughout the experiments, we fixed the seed for the train-
test split (depicted in Section IV-C) so that all models were
trained and tested with the same data. In addition to helping
reproducibility, we believe it makes the comparisons between
configurations fairer.

For our experiments, we decided to test the ADADELTA,
RMSProp, and ADAM optimizers to determine which is
the most suitable for our problem. Neural networks have a
considerable amount of hyperparameters. Hence, to simplify
the first experiments and gain some intuition on the problem,
we decided to leave the optimizers’ hyperparameters to their
default values. Table III lists these values.

Regarding other hyperparameters, we chose to tune the
number of units in the LSTM layer, d, and the number of

TABLE III: List of the default hyperparameters of each
optimizer.

ADADELTA | RMSProp | ADAM
1r=1 1r =0.001 | 1r =0.001
rho = 0.95 rho =0.9 beta_1 =09

beta_2 =0.999

epochs, evaluating them in different configurations. Next, we
detail each hyperparameter:

e Number of units in the LSTM layer, that corresponds
to the HIDDEN_SIZE;. Let us denominate it simply
by HIDDEN_SIZE, since there is only one layer and
only one HIDDEN_SIZE; to tune. This hyperparameter
is strongly related to the model’s learning capacity: the
more units the layer has the more it learns. However, the
trade-off is that it may start to have too many parameters
to learn and over-fit, loosing generalization power;

o 0, which represents the dropout rate, a value between 0
and 1 associated to the Dropout Layer, and corresponds
to the probability of each entry of the input vector turning
into O;

« Number of epochs, which defines the number of times the
optimizer updates the parameters. Generally, the higher
this parameter is the better the model learns. But again,
we need to balance learning with generalization power
and not let the model over-fit.

We performed manual hyperparameter tuning for these three
parameters, testing one by one, and following the order they
appear in the list above. Table IV shows the configurations
tested for each hyperparameter and optimizer combination. For
each hyperparameter, we started by testing a range of sparser
values: {10, 20,40, 80,160} for the HIDDEN_SIZE and the
number of epochs, and {0.2,0.3,0.5} for §. Next, we fine-
tuned the search testing two values around the best result (one
smaller and one greater), repeating the process as many times
as necessary. Each configuration was tested for 10 epochs
(except, of course, when tuning the number of epochs).

TABLE IV: Configurations tested for each hyperparameter.

Optimizer] HS [5 [NE
10, 20, 40, 70 0.20, 0.30, 0.50 10, 20, 40,
ADADELTA 80, 90, 160 70, 80, 90,
160, 200
10, 20, 40, 60 0.15, 0.20, 0.25, 10, 20, 40, 70,
RMSProp 70, 75, 80, 85 0.30, 0.50 80, 90, 160
90, 100, 160
10, 20, 40, 0.20, 0.25, 0.30, 10, 20, 30, 35,
ADAM 65, 70, 75, 0.35, 0.50 40, 45, 50, 70,
80, 90, 160 80, 90, 160

HS - HIDDEN_SIZE, § - dropout rate, NE - number of epochs

C. Results

According to our evaluation approach, described in the
previous section, the results of each optimizer, trained with the
best values found for each hyperparameter are shown in Table

TABLE V: Results of the accuracy, precision and recall for
the various configurations analysed.

Optimizer [[HS [& [NE [Accuracy [Precision | Recall
ADADELTA 80 0.30 160 0.9487 0.9837 0.9344
RMSProp 80 0.15 70 0.9535 0.9651 0.9614
ADAM 70 0.30 35 0.9413 0.9876 0.9189

HS - HIDDEN_SIZE, § - dropout rate, NE - number of epochs

-
o

ey

o

0.8

I
—
= —{IH

-
{H

- HH
-—h

= —{IH
[

o
@

0.6

Accuracy
Precision

o
kS

o

o

0.4

.
N

0.2

=4
o

0.0

— TH

—{ T
—{ Th
—{ T

]
o]
wo—]]

0.8

—{TH
L TH
® om o }_E
1]
00 }—E]

0.6

w o]

Recall

0.4

oo

0.2 ° 3

0.0 o o

10 20 40 60 75 80 85 90
Hidden size

160 10 20 40 60
Hidden size

75 80 85 90 160 10 20 40 60 75 80 85 90 160

Hidden Size

-
=)
-
=3

& == 1.0
= = = T T /= R
08 T T 0.8 . il o T T
o
g : 8 : . s : g 5 s
o o o
0.6 506 — 0.6 o
i g e il S s ¢ ¢
3 o o o o] 9
Iv) o -4 ° °
£ o4 £o04 04
o o o
0.2 0.2 0.2 o o o
0.0 0.0 0.0
0.15 02 0.25 03 055 01s 02 0.25 03 05 015 02 0.25 03 05
Dropout Rate Dropout Rate Dropout Rate
10 L0 ——
= /N L == 1.0
i el == T Y s I TR s S
Io - 5 E T T % = = T T
: o & 8 o o o s (]
0.8 0.8 5 5 o o 3 Gt
L o o g o °
o o] 8 8 8 g
oo R R 506 —o06f ° ° ° ° °
g o W S o o 8
o] 1 o
Z04 £04 0.4
o o
0.2 0.2 0.2 =
0.0 0.0 0.0
10 20 40 70 80 20 160 10 20 40 70 80 R 160 10 20 40 70 80 90 160

Number of Epochs

Fig. 7: Box-plots for the hyperparameter tuning of the hidden size of the LSTM layer,

Number of Epochs

Number of Epochs

dropout rate and number of epochs

(respectively, the first, second and third rows), using the RMSProp optimizer.

V. As we can observe the worst optimizer is ADADELTA
since its performance is the worst for all metrics. Furthermore,
it is the optimizer that takes the longest to converge - it
takes 160 epochs, against 70 epochs for RMSProp and 35 for
ADAM. ADAM and RMSProp have good results in different
metrics: RMSProp has the best accuracy and recall, and
ADAM has the best precision. Note that ADAM can achieve
nearly as good accuracy as RMSProp (0.9413 against 0.9535)
with half the epochs (35 against 70) and less units (70 against
80). For our work, it is more important the metrics’ results
than less computational cost, so we consider that RMSProp
achieves the best results under these hypotheses.

Fig. 7 shows 9 box-plots that result from the tuning for the
RMSProp. The plots are organized in a 3 X 3 matrix, where
each line corresponds to a hyperparameter, and each column to
a metric. As we can see, the box-plots tend to improve as the
value increases, until it reaches a point where the performance
starts to degrade. There are some aspects we should consider
when analysing multiple box-pots and multiple metrics: (1)
we always want to balance the performance for the three
metrics, though the accuracy is slightly more important; (2)
it is important to look not only to the median of each plot

but to the variance, represented by the height of the box;
and (3) finally, between two similar box-plots where one has
lower outliers, we should choose the other one. Based on these
guidelines, we chose the values 80 for the number of hidden
units, 0.15 for the dropout rate, and 70 for the number of
epochs.

VI. CONCLUSIONS

This paper aims to advance in the state-of-the-art of vulner-
ability detection in web applications, with a focus on SQLi
vulnerabilities. For that, we propose a Deep Learning (DL)
model for Natural Language Processing (NLP) that processes
PHP code translated into an intermediate language. The model
is constituted of different layers, namely Embedding, LSTM
+ Dropout, and Dense layers. Also, the paper presented the
evaluation of the model for one LSTM with three opti-
mizers (ADADELTA, RMSProp, and ADAM) and different
configurations for their hyperparameters. RMSProp achieved
the best scores. The experiments so far have validated our
approach, with our best model achieving results above 95%
for the accuracy, precision and recall. Nonetheless, the train
and test sets are retrieved from the same generated dataset,

which might not represent fully real PHP applications. In
the future, this work should be tested with a dataset of real
PHP applications to minimize this issue. Nevertheless, the
preliminary results lead us to conclude that the proposed DL
model can discover SQLi vulnerabilities, thus taking a further
step towards the detection of vulnerabilities based on machine
learning.

ACKNOWLEDGMENT

This work was partially supported by the ITEA3 Eu-
ropean through the XIVT project (I3C4-17039/FEDER-
039238), and national funds through FCT with reference
to SEAL project (PTDC/CCI-INF/29058/2017, LISBOA-01-
0145-FEDER-029058, POCI-01-0145-FEDER-029058), and
LASIGE Research Unit (UIDB/50021/2020).

[1]
[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

REFERENCES

CVE, “CVE Details. The ultimate
https://www.cvedetails.com/browse-by-date.php.
J. Williams and D. Wichers, “Top 10-2017 the ten most critical web ap-
plication security risks,” URL: owasp. org/images/7/72/OWASP_Top_10-
2017_% 28en, vol. 29, 2017.

DarkReading, “Sql injection attacks represent two-third of all web app
attacks,” 2019, https://www.darkreading.com/attacks-breaches/sql-
injection-attacks-represent-two-third-of-all-web-app-attacks/d/d-
1d/1334960.

P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia, and M. Vieira,
“Benchmarking static analysis tools for web security,” IEEE Transac-
tions on Reliability, vol. 67, no. 3, pp. 1159-1175, Sept 2018.

I. Medeiros, N. F. Neves, and M. Correia, “Equipping WAP with
weapons to detect vulnerabilities,” in Proceedings of the 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, 2016.

N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analysis for static
detection of web application vulnerabilities,” in Proceedings of the 2006
Workshop on Programming Languages and Analysis for Security, Jun.
2006, pp. 27-36.

P. Nunes, J. Fonseca, and M. Vieira, “phpSAFE: A security analysis
tool for OOP web application plugins,” in Proceedings of the 45th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, Jun. 2015.

J. Dahse and T. Holz, “Simulation of built-in PHP features for precise
static code analysis,” in Proceedings of the 21st Network and Distributed
System Security Symposium, Feb 2014.

I. Medeiros, N. F. Neves, and M. Correia, “Automatic detection and
correction of web application vulnerabilities using data mining to predict
false positives,” in Proceedings of the International World Wide Web
Conference, Apr. 2014, pp. 63-74.

B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Communications of the ACM, vol. 33,
no. 12, pp. 32—44, Dec. 1990.

P. Godefroid, M. Levin, and D. Molnar, “Sage: whitebox fuzzing for
security testing,” pp. 1-20, 2012.

F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “Kameleonfuzz:
evolutionary fuzzing for black-box xss detection,” in Proceedings of the
4th ACM Conference on Data and Application Security and Privacy.
ACM, 2014, pp. 37-48.

J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” in 2017 IEEE Symposium on Security and
Privacy, 2017, pp. 579-594.

I. Medeiros, N. Neves, and M. Correia, “Detecting and removing web
application vulnerabilities with static analysis and data mining,” /[EEE
Transactions on Reliability, vol. 65, no. 1, pp. 54-69, 2015.

L. K. Shar and H. B. K. Tan, “Mining input sanitization patterns for
predicting SQL injection and cross site scripting vulnerabilities,” in Pro-
ceedings of the 34th International Conference on Software Engineering,
2012, pp. 1293-1296.

security datasource,”

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

(36]

[37]

[38]
[39]

[40]

I. Medeiros, N. F. Neves, and M. Correia, “DEKANT: a static analysis
tool that learns to detect web application vulnerabilities,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
Jul. 2016.

Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“VulDeePecker: A deep learning-based system for vulnerability detec-
tion,” in Annual Network and Distributed System Security Symposium,
Feb. 2018.

Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” in Proceedings of the 33rd Conference on
Advances in Neural Information Processing Systems, Dec. 2019, pp.
10 197-10207.

W3Techs, “Usage statistics of php
https://w3techs.com/technologies/details/pl-php, 2019.
W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “Lemna: Explaining
deep learning dased security applications,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2018, pp. 364-379.

R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in Proceedings of
the 17th IEEE International Conference on Machine Learning and
Applications, 2018, pp. 757-762.

WhiteHat Security, “The DevSecOps Approach - Using AppSec Statis-
tics to Drive Better Outcomes,” Nov. 2019.

J. Clarke-Salt, SQL Injection Attacks and Defense. Elsevier, 2009.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press,
2016.

M. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
Networks for Machine Learning, vol. 4, no. 2, pp. 26-31, 2012.

D. Kingma and J. Ba, “Adam: a method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

Y. Goldberg, “Neural network methods for natural language processing,”
Synthesis Lectures on Human Language Technologies, vol. 10, no. 1, pp.
1-309, 2017.

T. Mikolov, M. Karafiit, L. Burget, J. Cernocky, and S. Khudanpur,
“Recurrent neural network based language model,” in Proceedings of
the 11th Annual Conference of the International Speech Communication
Association, vol. 2, 2010, pp. 1045-1048.

Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

I. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence learning with
neural networks,” in Proceedings of the Advances in Neural Information
Processing Systems, 2014, pp. 3104-3112.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

Y. Wu, M. Schuster, Z. Chen, Q. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

M. Luong, H. Pham, and C. Manning, “Effective approaches to attention-
based neural machine translation,” arXiv preprint arXiv:1508.04025,
2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the Advances in Neural Information Processing Systems, 2017, pp.
5998-6008.

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

A. Krizhevsky, 1. Sutskever, and G. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of Advances
in Neural Information Processing Systems, 2012, pp. 1097-1105.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
M. Boden, “A guide to recurrent neural networks and backpropagation,”
The Dallas Project, 2002.

T. J. Sejnowski and C. R. R., “Parallel networks that learn to pronounce
english text,” Complex Systems, vol. 1, no. 1, pp. 145-168, 1987.

for websites,”

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

J. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2,
pp. 179-211, 1990.

Y. Bengio, P. Simard, P. Frasconi ef al., “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157-166, 1994.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

F. Chollet, Deep Learning with Python. Manning Publications Com-
pany, 2017.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, pp. 1724-1734, 2014.

M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681,
1997.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
Proceedings of Advances in Neural Information Processing Systems,
2013, pp. 3111-3119.

O. Levy, Y. Goldberg, and I. Dagan, “Improving distributional similarity
with lessons learned from word embeddings,” Transactions of the
Association for Computational Linguistics, vol. 3, pp. 211-225, 2015.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

F. Yamaguchi, F. Lindner, and K. Rieck, “Vulnerability extrapolation:
Assisted discovery of vulnerabilities using machine learning,” in Pro-
ceedings of the 5th USENIX Conference on Offensive Technologies,
2011, pp. 13-13.

I. Medeiros, N. Neves, and M. Correia, “Statically detecting vulnerabil-
ities by processing programming languages as natural languages,” arXiv
preprint arXiv:1910.06826, 2019.

G. Grieco, G. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier,
“Toward large-scale vulnerability discovery using machine learning,”
in Proceedings of the 6th ACM Conference on Data and Application
Security and Privacy. ACM, 2016, pp. 85-96.

B. Stivalet and E. Fong, “Large Scale Generation of Complex and Faulty
PHP Test Cases,” in Proceedings of the IEEE International Conference
on Software Testing, Verification and Validation, 2016, pp. 409—415.

F. Chollet et al., “Keras,” https://keras.io, 2015.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929-1958, 2014.

T. G. Brain, “Tensorflow,” https://www.tensorflow.org/, 2015.

