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A B S T R A C T

Open Source Intelligence (OSINT) data is collected by publicly available sources to be used by intelligence
contexts among which Threat Intelligence Platforms (TIPs) are the main consumers. These platforms help
organizations aggregate, correlate, and analyze threat data from multiple sources in real-time to support
defensive actions. However, considering the unstructured nature of the collected data, TIPs require the
data to be correlated with real-time information coming from the monitored infrastructure, before being
further analyzed and shared. This paper presents ETIP, an Enriched Threat Intelligence Platform with extended
capabilities in terms of import, quality assessment processes, visualization and information sharing in current
TIPs. The platform receives structured cyber threat information from multiple sources and performs the
correlation among them with static and dynamic data coming from external sources and the monitored
infrastructure. This allows the evaluation of a threat score through heuristic-based analysis, used to enrich
the information received from OSINT and other sources. The final result is sent to external entities, such as
SIEMs, to be further used for a more in-depth analysis, and to be shared with trusted organizations.
. Introduction

The number and impact of cyber attacks have drastically increased
uring the last years, as revealed by reports written by governments
nd companies, especially in terms of how much these threats could
arm them from an economic point of view. The Council of the Eco-
omic Advisers of the United States [1] estimated that malicious cyber
ctivity had an impact in the U.S. economy between 57 billion and
09 billion dollars in 2016. Cybersecurity Ventures [2] identified cyber
rime as the ‘‘greatest threat to every company in the world’’, predicting
hat it will cost the world more than six trillion dollars annually by
021. Moreover, the global management consulting firm Accenture [3],
uring a study conducted in 2017 affirmed that cyber crime, on an
nnual average, is costing organizations 11.7 million dollars (around
3 percent more than the previous year). These successful incursions
otentially allow groups of attackers to acquire valuable intellectual
roperties and secrets. With the aim of facing these menaces to protect
recious internal and sensitive data as well as critical assets, it is crucial
o have timely access to relevant and accurate information about them.

∗ Corresponding author.

Collecting and processing Open Source Intelligence (OSINT) infor-
mation is becoming a fundamental approach for obtaining cybersecu-
rity threat awareness. Recently, the research community has demon-
strated that useful information and Indicators of Compromise (IoC)
can be obtained from OSINT [4,5]. Research studies have provided
evidence that useful and early information can be obtained from social
networks e.g., Twitter [5,6]. Twitter is a useful OSINT data source that
aggregates timely data from multiple sources which is simple to process
and analyze. Given the fact that users regularly tweet about their
activities and unusual events found, it is possible to obtain valuable
security-related data from Twitter before it becomes available on public
databases (e.g., NDV, ExploitDB, etc.) [7,8].

Besides the research oriented efforts, all Security Operation Centre
(SOC) analysts get updated about new threats against their IT infras-
tructures by collecting and analyzing cybersecurity OSINT data. Never-
theless, skimming through various news feeds is a time-consuming task
for any security analyst.

Furthermore, analysts are not guaranteed to find news relevant to
the IT infrastructure they oversee. Tools are therefore required, not only
to collect OSINT, but also to process it, aiming at enhancing the quality
214-2126/© 2021 Elsevier Ltd. All rights reserved.
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of the information carried on OSINT to SOC analysts, for instance, to
benefit from the potential they have. In addition, such tools must filter
only the relevant parts for the SOC analysts, thus decreasing the amount
of information and consequently, the time required to analyze it and
act upon. When appropriate, the filtered information must be further
processed to extract IoCs.

Moreover, a proper quality assessment is needed, to check if gath-
ered data can be considered as valuable Threat Intelligence (denoted
as TI). Sillaber et al. [9] identified TI quality evaluation as one of the
main challenges in actual cybersecurity information sharing scenarios,
mainly caused by the limitation of existing TI sharing tools, as well
as the lack of suitable and globally recognized standards and ontolo-
gies [10]. These assessment processes can provide more insights for
inferring the impact that some cyber attacks could have with respect to
internal assets and resources, prioritizing threat detection and incident
response.

In addition, the ability to share OSINT information is often not
enough. TI must be expressed, and then, shared using specific stan-
dards, allowing involved parties to speed up processing and analysis
phases of received information, achieving interoperability among them.

This paper is an extended version of our previous work [11] where
we introduced the Enriched Threat Intelligence Platform (denoted as
TIP), aiming at extending import and information sharing capabilities
f internal detection and monitoring systems (e.g., SIEMs) and also
mproving the quality assessment of received cybersecurity events. This
aper provides detailed information about the heuristics used in the
omputation of the threat score, the evaluated features, as well as the
elected attributes and their individual scores. In addition, this article
rovides information about the visualization platform used to display
he network topology in a graphical manner and to present results
btained by the tool (including the threat score).

The final objective is to integrate the relevant security data coming
rom public sources (e.g., social networks, OSINT), after going through
quality information enhancing process, with data gathered from the
onitored infrastructure through specific detection and monitoring sys-

ems (e.g., SIEMs, IDS, IPS), to anticipate and improve threat detection
nd incident response. This integration has been defined as a crucial
ctivity in order to produce real and valuable TI [12]. In this context,
n the one hand, it arises the need of a component that relates and
ggregates collected OSINT data, generating thus new enriched data.
n the other hand, it also requires a component that considers potential

ecurity issues in the monitored infrastructure to be correlated with the
eceived OSINT data, providing a threat score that helps to identify its
elevance and priority.

The threat score will complement the usage of static information
bout the monitored infrastructure with dynamic and real-time threat
nformation reported from inside the network in the way of IoCs.
his dynamic evaluation is based on heuristic analysis which allows
etermining the priority of the incoming OSINT data, by assigning
threat score to it. The produced object integrating the information

eceived from OSINT data sources through its calculated threat score
s sent directly to other security systems and tools (e.g., SIEMs) for
isualization, storage, processing, or feedback, and could optionally be
hared with external trusted organizations.

Both, original and enriched data are shared with trusted external
arties, improving collaborations among different organizations (that
ay belong to different sectors e.g., finance, health, energy, public ad-
inistration). Ardieta et al. [13] stated that tasks like threat detection

nd incident response could not be handled in an isolated way, from a
ingle organization point of view, highlighting the crucial role of threat
nformation sharing, which has also been considered as one of the five
ritical activities for enhancing defense capabilities [14].

The contributions of this article are summarized as follows:

• The ETIP platform that extends import and information shar-
ing capabilities of internal detection and monitoring systems
2

(e.g., SIEMs); a
• A method that improves the quality assessment of received cyber-
security events;

• A process that integrates relevant security data coming from
public sources with data gathered from the infrastructure through
specific detection and monitoring systems;

• A dynamic heuristic-based analysis to calculate the threat score
of each processed Indicator of Compromise (IoC) ;

• The deployment of the platform over a real attack scenario.

The remainder of this paper is structured as follows: Section 2
presents related work regarding Threat Intelligence Platforms. Section 3
describes the architecture of our proposed Enriched Threat Intelligence
Platform (ETIP). Section 4 details the Threat Score Evaluation process.
ection 5 illustrates the applicability of our approach with a use case
cenario and the obtained results. Section 6 discusses and analyzes the
ain results of this article. Finally, conclusions and perspective for

uture work are presented in Section 7.

. Related work

Several standard formats have been proposed to facilitate cyber
ntelligence sharing among platforms. Examples of such formats are
he Open Indicators of Compromise (OpenIoC [15]), Structured Threat
nformation eXpression (STIX [16]), Trusted Automated eXchange of
ndicator Information (TAXII [17]).

Besides the great variety of commercial and open-source security
ata analytic platforms, current tools are unable to cope with the
ew and complex attack patterns. Most of them lack of capabilities to
ollect, process, store and use Open Source Intelligence (OSINT) data
o identify, visualize and prioritize threats [18–21].

Some studies have identified Threat Intelligence Platforms (TIPs) as
deal tools for data collection, storage, sharing, and integration with
xternal entities (e.g., other security platforms and tools, as well as
pecific groups for handling incident response and threat management
uch as SOCs, CERTs, CSIRTs). Several TIPs are available in the market
most of them under commercial license). In terms of open-source
olutions, Tounsi and Rais [22] provides a survey including (i) the
alware Information Sharing Platform (MISP) [23], (ii) the Collective

ntelligence Framework (CIF) [24], (iii) the Collaborative Research Into
hreats (CRITs) [25], and (iv) Soltra Edge [26] (only a limited version

s available with this kind of license).
Sauerwein et al. [27], provide an exploratory study of software

endors and research perspectives of threat intelligence sharing plat-
orm, and conclude that the market for threat intelligence sharing is
till developing. Moreover, ENISA provides an updated report about
pportunities and limitations of actual TIPs [28], suggesting guidelines
o overcome them.

Owen [29] proposes Moat, a powerful tool that covers known bad
ctors and consume data from multiple sources such as vulnerability
ystems and port scanners. Moat has been integrated with SIEMs using
TIX and XML formats for sharing purposes but it is not yet defined for
ther well-known standards such as TAXII.

Some commercial SIEMs (e.g., LogRhythm [30]) have added secu-
ity intelligence to its analytic platform. Their approach uses rich con-
ext enabled by threat intelligence from STIX/TAXII-compliant
roviders, commercial and open-source feeds, as well as internal honey-
ots. As a result, the platform uses these data to reduce false-positives,
etect hidden threats, and prioritize concerning alarms.

Many companies started relying on TIPs for overcoming gaps and
imitations of actual detection and monitoring systems, especially
IEMs [31]. They are in charge of retrieving structured and unstruc-
ured data from diverse external sources, and perform various complex
perations, such as filtering, aggregation, normalization, detection,
nalysis and enrichment, as well as the injection of results into SIEMs.
owever, their implementation and usage are still in their infancy and,

s stated in [27], many drawbacks have to be addressed, for instance,
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Fig. 1. The Enriched Threat Intelligence Platform architecture.
the dynamic trust assessment of external sources and advanced analysis
capabilities still require manual work to make the retrieved information
effectively actionable.

In addition, previous works have provided evidence that useful and
early information can be obtained from OSINT sources [5,6]. Several
approaches [32–34] have been proposed to collect context-specific
OSINT by using a keyword set. As a result, relevant tweets are selected
and classified using machine learning techniques, making it possible
to discover threat data in OSINT sources, before they are included
in threat databases. Other approaches based on unstructured text use
ontologies and/or machine learning techniques to detect and predict
threat patterns [35–37]. However, most of these approaches require
the development of OSINT tools to filter valuable information from the
noise generated by OSINT feeds, and require validation from security
analysts to discard misleading and inaccurate data.

To the best of our knowledge, more research is needed about TIPs,
and their integration with other security tools. Our approach suggests
the use of a platform for collecting and aggregating cybersecurity
related information from OSINT, relying on MISP for storing and man-
aging the resultant IoCs, which will be further enriched with a threat
score, for prioritizing possible defense actions. The selection of MISP is
due to its numerous advantages, e.g., its ability to be integrated with
SIEMs and IDSs; its high flexibility features to integrate internal and
custom solutions; the support of specific data exchange standard, such
as STIX, as well as good built-in information sharing capabilities; the
availability of a very detailed on-line documentation [38]; and a huge
and responsive on-line community, in case of development issues. The
outcome of this platform will feed systems, like SIEMs and IDSs, with
actionable information that will improve the detection of cyber threats,
and could easily be shared, in an automated way, with internal SOCs,
CERTs and CSIRTs, as well as with other trusted organizations.

3. Enriched Threat Intelligence Platform (ETIP )

The platform we propose in this paper, called Enriched Threat
Intelligence Platform (ETIP), involves generating enriched threat in-
telligence, leveraging from OSINT data and data provided by external
sources and organization’s IT infrastructure (e.g., firewalls, IDS, IPS)
which are correlated, evaluated and represented as a threat score.
This enriched information can be integrated by defense mechanisms
to prevent attacks against the organization and, hence, combat cyber-
crime. Also, it can be visualized graphically for better understating
and analyzing its interconnections and relevant data. This section gives
an overview of the approach and the architecture of the platform, for
which definitions of the main elements used in ETIP are presented, and
the characteristics of each module is provided.
3

3.1. Overview

ETIP’s architecture is presented in Fig. 1, which illustrates the three
main modules it comprises, namely: (i) Input Module that includes the
IoC generators from OSINT, as well as infrastructure tools and devices
that aggregate threat-related data; (ii) Operational Module responsible
for deploying the heuristic analysis process to calculate the threat score
of the data collected and correlated and storing them for later usages;
(iii) Output Module that contains the tool dashboard to visualize the en-
riched information generated and connections to security data analytic
platforms (e.g., SIEMs), allowing the exportation of the enriched data
to such platforms.

The first module collects security events (i.e., IoCs) provided from
different OSINT feeds as well as infrastructure data. IoCs are processed
and analyzed, resulting in IoCs with more information (i.e., composed
IoCs–cIoCs). The second module receives these composed IoCs and cor-
relates them with information collected from the infrastructure (e.g., IP
addresses used, open ports, protocols in use, etc.), generally present in
logs generated from security devices (e.g., IDS, Firewalls). Both, cIoCs
and infrastructure data are contrasted to identify if there is a match.
In such a case, the threat score of the matched cIoC will be increased
by the heuristic component, denoting that cIoC carries potential threat
data for organization’s devices. For example, if a cIoC indicates there
is a new vulnerability affecting Windows 10 machines, and we detect
at least one active device in the target infrastructure running Windows
10, then the threat score is increased for this particular cIoC. Applying
a heuristic analysis to these data, the resulting IoC can be further
transformed into an enriched IoC (i.e., eIoCs), providing more insights
about how much the incoming information could be considered as real
intelligence by the enterprise. The third module may use the eIoCs or
a reduced version of them (i.e., reduced IoCs–rIoCs) for sharing and
visualization purposes.

3.1.1. Main key concepts
This section provides definitions of key concepts that are widely

used during the introduction the proposed solution and main outcomes
generated.

• Indicator of Compromise (IoC): Denoted also as sIoC (single
IoC) are pieces of forensic data, such as data found in system
log entries or files, that identify potentially malicious activity
on a system or network [39]. sIoCs are useful in detecting data
breaches, malware infections, or other threat activity.
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Fig. 2. OSINT data collector architecture.
• Composed Indicator of Compromise (cIoC): A cIoC is the result
of the aggregation, interrelation and normalization of OSINT data
regarding a same threat, which is retrieved from various source
feeds and can be expressed in different formats (e.g., plaintext,
csv).

• Enriched Indicator of Compromise (eIoC): An eIoC is the en-
riched version of a cIoC, obtained after the correlation of the
latter with static and real-time information associated with the
monitored infrastructure. The result of this process is a threat
score (detailed later) that will be added to cIoC, enhancing and
transforming it in an eIoC. For this reason the word ‘‘enriched’’
has been used.

• Reduced Indicator of Compromise (rIoC): An rIoC is the re-
duced version of the corresponding enriched one. The latter could
potentially contain a huge amount of information, not worthy to
be visualized, but still useful for future analysis and correlation
tasks. Therefore, only the rIoC, with just the most relevant infor-
mation from the monitored infrastructure point of view, will be
sent to the dashboard, while the eIoC will be stored locally, or
shared with external entities.

3.2. Input module

This module is composed of two elements in charge of collecting
data coming from OSINT sources and the infrastructure and a MISP in-
stance to centralize all collected and generated data. Its main objective
is to collect, clean, and aggregate data to feed the operational module
with composed Indicators of Compromise (cIoCs) and other threat
related data for further data processing and analysis. The remainder
of this section details the components of this module.

3.2.1. OSINT data collector
This component aims to generate cIoCs based on the aggregation of

OSINT data. The architecture of this component is represented in Fig. 2
and a detailed version of it can be found in [40]. The main parts are
the following:

• OSINT Feeds. The component is configured with different types
of Open Source Intelligence (OSINT) feeds about security events
(e.g., cyber-attacks, malware domains, vulnerability exploitation,
IP blacklists) provided by several sources, such as free and col-
laborative organizations.

• TIPs. Different TIPs are used in parallel to collect several OS-
INT data provided from diverse feeds, which take advantage of
the enrichment capabilities they offer, such as improving OSINT
threat intelligence with external data not included in OSINT feeds
(e.g., asn source, whois).
4

• Collector. The output of the different TIPs, as a form of IoCs, is
channeled to a collector module configured in MISP for the effect.
The TIP’s IoCs are seen as OSINT feeds but in an IoC format
(e.g., STIX, MISP format).

• IoC Normalizer. Since IoCs might be collected in different for-
mats (depending on the format adopted by TIPs), it is necessary
to normalize them in a single and common format (e.g., MISP
format [23], STIX, etc.). After this process, they are stored in a
database to be processed by the component. MISP performs this
task, i.e., receives IoCs in different formats and normalize them,
representing them in MISP format.

• Deduplicator. IoCs received from different TIPs can be equal, since
TIPs can be configured with the same OSINT feeds. The deduplica-
tor module analyzes the received IoCs with those already existing
in the MISP database with the aim to identify duplicated IoCs
and remove them before being processed by the IoC aggregator
module. After an IoC is normalized and before being stored in
the database, the deduplicator uses a metric of similarity, called
contained similarity [40], to infer the existence of duplicates,
combining the normalized IoC with those in the database and
calculating the similarity between each pair of combined IoCs.
When resulting similarities equal to one, (e.g., in a pair of IoCs
both are equals or one IoC is contained in the other IoC), it means
that the deduplicator found duplicates, and then, it discards them.

• IoC Aggregator. Aggregates different but related IoCs, and gen-
erates new ones. The process consists on identifying IoCs that
contain relevant interrelated information, aggregating them in a
same set, and then, merging that information into a single IoC,
creating a new IoC that we call composed IoC. These new IoCs are
stored in the database for later be used by the threat intelligence
sharing component (see Section 3.3).

Given the relevance of the IoC Aggregator, as it is the main part
of the OSINT data collector component and performs the aggregation,
correlation and representation steps, next we give more details about
it. The process performed by the IoC Aggregator starts by searching
for correlations between the different IoCs stored in the database. In
other words, it searches for those pairs of IoCs where its similarity
ranges [0, 1], i.e., there is common (intersection of) data within a
pair. Once correlations have been identified, it generates new IoCs
composed of the correlated IoCs. It performs its function in two steps:
(1) aggregation, it queries the database to identify IoCs that contain
relevant related information fields in order to determine sets of related
IoCs; (2) representation, for each resulting set, it merges the information
contained in different IoCs into a single one, eliminating duplicated
attributes, and stores the new composed IoC for later use.

To establish the correlations the component resorts of one of two
correlation methods we defined, named naive and deeper, that would
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allow the identification of groups of correlated IoCs, generating thus
the sets of IoCs. However, before performing any method, an initial
filtering stage is applied to identify only IoCs that respect specific rules,
i.e., by eliminating events that will bring no added value (such as
blacked IP lists), this allows to create a subset of IoCs of interest. This
filter is based on a previous configuration of the component, in which
we can define the level of detail about threats we want to process,
i.e., the level of information that IoCs carry. In the naive method only
direct correlations are identified, in the sense that the composed IoC
is built from a central IoC and all those IoCs that share one or more
attributes with it. This means that in the naive method each IoC of
the subset of IoCs of interest is considered a central IoC and for each
of them are identified the direct correlations. The resulting composed
IoCs can overlap each other. On the other hand, the deeper method
creates a graph with all events in the IoCs set, where each IoC is a
node and the edges represent shared attributes between IoCs, and sets
interconnecting IoCs are identified as a source for a new composed IoC.

3.2.2. Infrastructure data collector
Unlike the OSINT data collector, this component obtains informa-

tion related to the monitored infrastructure that could lead to internal
indicators of compromise (e.g., hashes, signatures, IPs, domains, URLs,
etc.). This information can be obtained from the system log files that
record events occurring in an operating system or messages between
different users of a communication software. Event logs, system logs,
server logs, Web logs, and application logs, are examples of the in-
frastructure input data. These data can be collected from a variety
of devices (e.g., firewalls, intrusion detection and prevention systems,
honeypots, and other security sensors) that could provide indications
of malicious activities in the system.

In addition, this component gathers information of internal mon-
itoring devices and operations from the infrastructure (e.g., installed
applications, operating systems, threat actors, intrusion tools, vulnera-
bilities, etc.) that will be contrasted with the data coming form external
sources in order to assess their corresponding risk level. This correlation
process, between information received from external sources and cy-
bersecurity related data detected with internal security tools, has been
defined as a critical activity for obtaining relevant and actionable threat
intelligence [12].

Concretely speaking, if the infrastructure data collector detects an
application running on Windows XP, for which a given vulnerability
has been recently detected by the OSINT data collector, the corre-
lation of these data coming from these two sources will indicate a
potential attack scenario, for which the threat score must be increased
accordingly.

3.2.3. Generating composed IoCs from OSINT and infrastructure data
Both OSINT and infrastructure data components have been built

considering the MISP platform. The deduplicator and IoC aggregator
modules from the OSINT data collector were developed in Python 3
and integrated in MISP. MISP acts as the collector and IoC normalizer
to receive and normalize the data that can be provided from different
TIPs (in case of OSINT data), or from organization’s infrastructure (in
case of infrastructure data), and then, it uses the other two modules
to process the received data, respectively, to eliminate duplicated IoCs
and aggregate IoCs associated with the same threat category in a single
IoC (generating composed IoCs).

The OSINT data collector offers to the end-user the possibility of
configuration based on two criteria: (1) the trust level of the IoC
assigned by the MISP community, where, for example, an IoC with
level 2 means that IoC has the trustiest level of confidence and its
information is relevant; (2) the interrelation type between IoCs which
will be considered by the IoC aggregator module. This interrelation can
be based either on the IoC as a whole, or on their attributes. The former
only allows interrelations between IoCs that belong to the same threat
5

category or type of infrastructure event, whereas the latter permits a
Fig. 3. Schematic for the creation of a composed IoC.

deeper analysis and connections among IoCs, allowing to generate new
data provided by IoCs of different categories (e.g., IoCs belonging to
the MISP network category and from type of vulnerability).

The input module considers dividing the OSINT feeds in two cat-
egories: (1) low level feeds, which consist mainly of IP addresses and
URLs; and (2) high level feeds, which contain a more advanced analysis
with information about network artifacts, campaigns, etc.; that feed
TIPs (e.g., CRIT, MISP). It performs queries to the database to identify
new entries and other entries that have matches, and then merge them
forming a new IoC and inject it into the database, which is labeled with
a tag that allows identifying it as a rich IoC and avoids the creation of
loops.

Fig. 3 exemplifies a composed IoC formed from OSINT data. In the
figure, starting from an IoC that contained 76 elements, we were able
to identify 7 other IoCs, originating from 3 distinct OSINT feeds, that
were correlated. The merging of these IoCs allowed the creation of a
new IoC containing 468 elements.

The resulting composed IoCs (cIoC), regardless the source they
provided (OSINT or infrastructure), are stored in the Composed IoC
database which follows the MISP database structure since a cIoC has the
same format of a MISP IoC plus some additional attributes created to
distinguish the cIoC from the original IoCs. Later, they will be processed
jointly by the operational module to find malicious activity in the
organization TI infrastructure.

3.3. Operational module

This module is based on MISP, which is able to correlate static
and real-time information (e.g., Indicators of Compromise), related to
the monitored infrastructure, with data coming from external OSINT
sources (represented as cIoCs) through OSINT data fusion and analysis
tools, to check the relevance and accuracy of the data. The result of
these actions is what we call the enriched IoC (eIoC), an IoC that
combines both OSINT and infrastructure data regarding a same threat.
Furthermore, the module is also able to evaluate the threat score of
eIoCs and share both the original (infrastructure and OSINT data,
and cIoCs) and the enriched information with external entities, in an
automated way.

The proposed module architecture, depicted in Fig. 4, is composed
of two main elements: (i) Data Correlator & Exporter, represented by
a MISP instance and in charge of correlating data from both OSINT
sources (i.e., composed IoCs) and internal sources (i.e., infrastructure
data), as well as sending the enriched IoCs to internal components, sys-
tems and tools (e.g., SIEMs) or sharing them with trusted organizations;
and (ii) the Heuristic Component, in charge of performing the heuristic
analysis, with the final aim of computing a Threat Score, enriching the
data coming from the Data Correlator, and sending it back to the MISP
Instance. In Fig. 4, we include the two components of the input module
for better illustrating and understanding the interconnection of both

input and operational modules.
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Fig. 4. Operational module architecture, including the OSINT and infrastructure data collectors.
t
n

3.3.1. Data correlator & exporter
From Fig. 4, the OSINT and Infrastructure data collectors are re-

sponsible of capturing useful data from OSINT, and the monitored
infrastructure, and generating cIoCs in order to evaluate a set of pre-
defined heuristics and to compute a threat score. Composed IoCs are
stored in the MISP Instance Database, whereas collected infrastructure
data are stored in the Heuristic Component Database.

The integration between security tools, as well as internal SOC and
CERTs/CSIRTs, and the threat intelligence sharing module is possible
thanks to the adoption of MISP. The objective is to use, as much as
possible, the built-in sharing capabilities of the platform when this in-
teraction takes place, such as a zeroMQ publish–subscribe model [41].
MISP comes with so-called ‘‘MISP-modules’’, used both for ad-hoc im-
port and export of threat information. If required, new modules could
be created from scratch and integrated with the MISP Instance, without
modifying the core functionalities of the platform. The deduplicator,
aggregator IoC and heuristic components fit on these kind of modules,
which were built from the scratch and integrated with MISP.

Data stored in the MISP instance is represented through JSON for-
mats (e.g., STIX, MISP events), or through simple documents related to
generic information. Since its usage is of great interest to the heuristic
component, data can be also stored in a different way, using a private
non-relational database such as MongoDB [42] (as presented in Section
7.4), which simplifies the information retrieval by the heuristic engine
and allows for a full control of the analysis performed by the tool.

The adoption of MISP makes it possible to automatically share
data with external entities thanks to its built-in information sharing
capabilities. For those cases in which the external entity is using a MISP
instance, the sharing process is performed by simply synchronizing both
instances. Otherwise, MISP comes with a list of REST APIs, which are
accessed from any internal and external services with different levels
of access rights, to directly interact with its database, to push/pull
cyber-security related events.

3.3.2. Heuristic component
The heuristic component receives information coming from multiple

sources (e.g., OSINT data, infrastructure, IoCs, etc.) to be used in the
6

n

Threat Score (𝑇𝑆) analysis performed by the heuristics engine. This
latter considers a set of conditions that are evaluated for every single
feature. A score is assigned to every feature (i.e., individual score). The
sum of all individual scores results into the Threat Score associated with
the data being analyzed.

Data could be dynamic (e.g., IoCs detected in the infrastructures) or
static and generic information about a specific infrastructure (e.g., used
sensors, operating systems, specific lists of IP addresses). The Threat
Score Agent is responsible for the generation of the resulting enriched
Indicator of Compromise (eIoC), including the Threat Score for the se-
curity information received from OSINT data sources. The eIoCs shared
by this component includes the same information received from OSINT,
as well as the associated Threat Score and the features considered in
the evaluation. A detailed description of this component is provided in
Section 4.

3.4. Output module

The Output module of our platform is mainly in charge of represent-
ing graphically the most relevant information contained in the eIoCs,
as the form of reduced IoCs (rIoC) produced in the operational module.
Enriched IoCs can contain a great number of features that can reduce
efficacy of the visualization process. In order to avoid such limitations,
a reduced IoC (rIoC), composed of information related to the infrastruc-
ture and the most relevant information of eIoC which is obtained from
the attributes that support the threat score, is used for this purpose. The
eIoC could be, instead, shared with other external entities, which could
be both internal security tools or trusted organizations. The reminder
of this section details each component of the output module.

3.4.1. Dashboard — graphical representation
The Dashboard provides a graphical representation of the infrastruc-

ure topology by highlighting the alarms and rIoCs associated to each
ode composing the infrastructure’s network, as depicted in Fig. 5.

Each node will have in its upper left side a circle indicating the

umber and severity of the alarms (in colors green, yellow and red),
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Fig. 5. ETIP’s Dashboard. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
and in its lower right side, a star indicating the number of rIoCs related
to that particular node.

Alarms will indicate the number of issues, IP source and destination,
as well as a brief description of the issue. rIoCs will indicate the num-
ber of detected vulnerabilities, the Common Vulnerability Exposure
(CVE) [43], the associated threat score, a brief description of the vul-
nerability and the affected application. A system inventory containing
the nodes, and their installed applications is required to perform the
match.

In addition, the dashboard provides, in a separate tab, informa-
tion about the type of node (e.g., Server, Workstation); the IP ad-
dresses (known, unknown, source, destination); the operating system
(e.g., Linux, Windows); and the connected networks (e.g., LAN, WAN).
The right side of the dashboard shows the nodes of the infrastruc-
ture with at least one security issue, for which, alarms and IoCs are
provided.

Reduced IoCs are generated automatically by the platform after
performing the threat score computation. Three attributes compose the
rIoC: (i) information about the vulnerability (i.e., CVE number and
description); (ii) threat score value (ranging from zero to five); and
(iii) affected assets/applications in the infrastructure. The relevance of
these data is validated by the security administrator based on expert
knowledge and potential matches with the weighting factor criteria
defined in Section 4.3.

3.4.2. External entities
The exchange of eIoCs is performed through MISP, which automat-

ically converts all the received information into the MISP JSON format
and stores it in the MISP relational database. The JSON format is always
used whenever two or more MISP instances are exchanging intelligence
among them. However, when sharing with external entities that do not
use MISP, as well as systems which are not able to directly handle
the MISP format, the usage of other standards is preferable, also for
describing a wider set of TI. From this point of view, STIX 2.0 represents
a good choice, being the most used in TI domain [44]. MISP comes
out with the possibility of exporting internal stored information using
7

this specific standard. Moreover, the modules in charge to perform the
conversion are extensible and can be adapted and improved depending
on the organization needs, in particular if they need to develop their
own custom export module, and add it to MISP.

After these considerations, the idea behind the ETIP is to rely on
the MISP JSON format to store incoming events, due to the adoption
of MISP. This information is then converted into STIX 2.0, if necessary
for the analysis, and exported to the Heuristic Component. This last
standard will be considered, starting from the heuristic features identi-
fication until the evaluation of the Threat Score, which, once computed,
will be added to the original cIoC as a custom attribute. To improve
the overall quality of the generated eIoCs, additional information asso-
ciated to the criteria considered in the score evaluation could be used
for the enrichment. Finally, the enriched indicator could be exported
using both MISP format or STIX 2.0, depending on the receiver’s needs.

4. Threat score evaluation

The threat score evaluation is part of the heuristic component
that uses a threat score function (detailed in Section 4.1) to compute
the relevance of the received data. The process performs an analysis
methodology composed of the following steps:

1. Source Identification: during this phase we search and identify
all possible sources of information. Examples of these sources
are: security logs, databases, report data, OSINT data sources,
IoCs, etc.

2. Heuristics Identification: different features (e.g., heuristics)
are identified from the input data. Such features provide rele-
vant information about the infrastructure (e.g., vulnerabilities,
events, faults, errors, etc.) useful in the threat analysis and
classification process. Examples of heuristics are: CVE, IP source,
IP destination, port source, port destination, timestamp, etc.

3. Threshold Definition: for each heuristic, minimum and maxi-
mum possible values are defined based on characteristics asso-
ciated with the instance. We checked, for instance, if the input
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data contains or not a CVE for the detected threat. A threshold
(e.g., 0–5) is assigned to cover all possible results.

4. Score Computation: for each possible instance of the identified
heuristic, a score value is assigned based on expert knowledge.
All individual scores are then aggregated and a final score is
computed. The resulting value will indicate the priority and
relevance of the security information coming from OSINT data
sources and the monitored infrastructure.

5. Training Period: a set of preliminary tests need to be performed
during a training process to evaluate the performance of the
engine. The tests include real data to analyze the score obtained
individually (for each heuristic) and globally (for the whole
event) which help to analyze false positive and negative rates.

6. Engine Calibration: in order to minimize deviations (e.g., re-
duce number of false positive, false negative) the engine must be
calibrated by analyzing the obtained results, adding other heuris-
tics and/or modifying the assigned values to current attributes.

7. Final Tests: Once the engine is calibrated, we can repeat previ-
ous tests or add new ones in order to evaluate the performance
of the tool.

4.1. Threat score function

The heuristics-based threat score is composed of a set of individ-
ual scores as a complement of other prediction tools to indicate the
priority and relevance of incoming security information received from
OSINT and infrastructure data sources. There exists a large number of
different aggregation operators (e.g., Arithmetic Mean [45,46], Geo-
metric Mean [46], Harmonic Mean [46], Weighted Mean [47], Ordered
Weighted Averaging — OWA [45,48,49], Weighted Ordered Weighted
Aggregation — WOWA [50]) that can be used for the computation
of the threat score. They differ on the assumptions about the data
(data types) and the type of information that we can incorporate in
the model.

From the aforementioned aggregation operators, the Weighted Mean
(WM) is the selected function to compute the threat score, due to
the following advantages: (i) simple and straightforward function; (ii)
avoids indeterminate results and/or null values; (iii) can be used if
one or more individual scores are zero; and (iv) individual scores are
assumed to have different weights depending on the source and the
relevance of the information.

The proposed Threat Score (𝑇𝑆) is defined as the sum of all individ-
ual heuristic values (𝑋𝑖) times its corresponding weight factor (𝑃𝑖). This
latter considers multiple criteria (e.g., relevance, accuracy, timeliness,
variety). The sum is then affected to the completeness parameter (𝐶𝑝),
as shown in Eq. (1).

𝑇𝑆 = 𝐶𝑝 ×

( 𝑡
∑

𝑖=1
𝑋𝑖 × 𝑃𝑖

)

(1)

where
𝐶𝑝 = Completeness criterion: 𝑁𝑜𝑛_𝐸𝑚𝑝𝑡𝑦_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑇 𝑜𝑡𝑎𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
𝑋𝑖 = Value assigned to a given heuristic’s feature based on the

nformation obtained from the IoC during the evaluation
𝑃𝑖 = Weighting Criteria
The resulting 𝑇𝑆 ranges from zero to five (0 ≤ 𝑇𝑆 ≤ 5), the

igher the 𝑇𝑆 value, the more reliable the IoC. Thus, a 𝑇𝑆 with a
alue between zero and one (0 ≤ 𝑇𝑆 ≤ 1) indicates a Very Low level
f priority; a 𝑇𝑆 with a value between one and two (1 ≤ 𝑇𝑆 ≤ 2)
ndicates a Low level of priority; a 𝑇𝑆 with a value between two and
hree (2 ≤ 𝑇𝑆 ≤ 3) indicates a Medium level of priority; a 𝑇𝑆 with a
alue between three and four (3 ≤ 𝑇𝑆 ≤ 4) indicates a High level of
riority; and a 𝑇𝑆 with a value between four and five (4 ≤ 𝑇𝑆 ≤ 5)
8

ndicates a Very High level of priority.
.2. Heuristic features and values

The first part of the (𝑇𝑆) function refers to the value assigned to a
iven heuristic (𝑋𝑖) based on the type of information processed during
he evaluation.

Regarding heuristics identification, we considered the STIX 2.1
tandard, defined as the de-facto standard for describing threat in-
elligence [51]. By August 2020, the standard defines eighteen STIX
omain Objects (SDOs [16]) to represent each piece of information
ith specific attributes that are interrelated for a better understanding
nd more accurate details on the specific event they represent. Exam-
les of SDOs implemented for the proposed solution to represent cyber
hreat information in our platform are the following:

• Attack Pattern: type of tactics, techniques, and/or procedures
describing ways threat actors attempt to compromise targets;

• Identity : individuals, organizations, or groups, as well as classes
of them that could be involved in a security event;

• Indicator : contains patterns used to detect suspicious or malicious
cyber activity;

• Malware: malicious code or software used to compromise the con-
fidentiality, integrity, or availability of a victim data or system;

• Tool: legitimate software that can be used by threat actors to
perform attacks;

• Vulnerability : mistakes in software that can be directly used by a
hacker to gain access to a system or network.

It is important to know that the analysis is not limited only to the
forementioned SDOs, as the solution is designed to be enriched by
ther objects (e.g., Infrastructure, Location, Report, Threat Actor, etc.),
ith useful information about potential threats over the target system.
or each heuristic, we identified a set of features that indicate valuable
nformation on the identification of a threat. Such features repre-
ent Required Common Properties (RCP), Optional Common Properties
OCP), Not Applicable Common Properties (NCP), and Object Specific
roperties (OSP) of each STIX Domain Object, as well as infrastructure
ata that can be useful on the threat identification. Examples of features
epresenting Object Specific Properties are provided in Table 1 and can
e obtained from the properties tables of the STIX documentation.1

Considering, for instance, that the heuristic to be evaluated is the
ne corresponding to vulnerabilities, Table 2 summarizes all possible
eatures, attributes, and scores that could be obtained from an IoC of
ype vulnerability. Please note that besides the required and optional
roperties associated with the IoC, our approach check other features
elated to the infrastructure data. For instance, operating_system.

Features related to the vulnerability object have been identified
n Table 2, and attributes for each feature type have been associated
ith a predefined score. This latter is statically assigned based on
xpert knowledge and an analysis performed on multiple IoCs to deter-
ine the possible values included in each attribute. For instance, the

perating_system feature presents the following attributes Windows,
OS/Linux, Others, and unknown (if no information is present).

Being Windows the operating system with the highest market share
er device type (i.e., Desktop/laptop), with more than 70% of the
lobal market share,2 and thus the higher attack surface, it is assigned
score of five (5), iOS and Linux, whose attack surface is lower, are

ssigned a score of three (3), and for other operating systems a score
f two (2) has been assigned, leaving a score of one (1) for unknown
Ses.

Considering that one of the features to be evaluated is the presence
f a Common Vulnerability Exposure (CVE) [43] identified in the input

1 https://docs.oasis-open.org/cti/stix/v2.1/cs01/stix-v2.1-cs01.html#
nrhq5e9nylke.

2 https://gs.statcounter.com/os-market-share/desktop/worldwide.

https://docs.oasis-open.org/cti/stix/v2.1/cs01/stix-v2.1-cs01.html#_nrhq5e9nylke
https://docs.oasis-open.org/cti/stix/v2.1/cs01/stix-v2.1-cs01.html#_nrhq5e9nylke
https://gs.statcounter.com/os-market-share/desktop/worldwide
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Table 1
Example of heuristic’s features.

Heuristics Object specific properties

Attack pattern name, description, aliases, kill_chain_phases
Campaign name, description, aliases, first_seen, last_seen, objective
Course of Action name, description, action
Grouping name, description, context, object_refs
Identity name, description, roles, identity_class, sectors, contact_information
Indicator name, description, indicator_types, pattern, valid_from, valid_until, kill_chain_phases
Infrastructure name, description, infrastructure_types, aliases, kill_chain_phases, first_seen, last_seen
Intrusion Set name, description, aliases, first_seen, last_seen, goals, resource_level, primary_motivation, secondary_motivations
Location name, description, latitude, longitude, precision, region, country, administrative_area, city, street_address, postal_code

Malware name, description, malware_types, is_family, aliases, kill_chain_phases, first_seen, last_seen, operating_system_refs, architecture_execution_envs,
implementation_languages, capabilities, sample_refs

Malware Analysis product, version, host_vm_ref, operating_system_ref, installed_software_ref, configuration_version, module, analysis_engine_version,
analysis_definition_version, submitted, analysis_started, analysis_ended, result_name, result, analysis_sco_refs, sample_ref

Note abstract, content, authors, object_refs
Observed Data first_observed, last_observed, number_observed, objects, object_refs
Opinion explanation, authors, opinion, object_refs
Report name, description, report_types, published, object_refs

Threat Actor name, description, threat_actor_types, aliases, first_seen, last_seen, roles, goals, sophistication, resource_level, primary_motivation,
secondary_motivations, personal_motivations

Tool name, description, tool_types, aliases, kill_chain_phases, tool_version
Vulnerability name, description
Table 2
Features, attributes and scores associated to an IoC of type vulnerability.

Feature Description Attributes and scores

operating_ system information about the affected operating system windows (5), iOS, Linux (3), others (2), unknown (1).
source_diversity IoC has been previously reported by OSINT or different sources OSINT_source (1); No_OSINT_source (2); infrastructure_source (3).
application Affected application identified in the IoC browser (5), office (4), android (3), web (2), other (1).
vuln_app_ in_alarm Check if incidents/alarms are related to specific applications present(5), not_present (1).
modified/ created Timestamp related to object creation/last modification last_24h (5), last_week (4), last_month (3), last_year (2), other (1).
valid_from From when the IoC can be considered valid last_week (4), last_month (3), last_year (2), other (1).
valid_until Until when the IoC can be considered valid less_or_equal_to_current_date (1); greater_than_current_date (5).
external_references External references checked against a local inventory multi_known_ref (5); single_known_ref (4); unknown_ref (3); no_ref (1).
cve Check if CVE is found in the information provided by the IoC, and if

so, check the CVSS
No CVE or CVE with no CVSS (1), CVE with low CVSS (2), CVE with
medium CVSS (3), CVE with high CVSS (4), CVE with critical CVSS (5).
Table 3
Common Vulnerability Score System (CVSS) v3 ratings.
Source: https://www.first.org/cvss/specification-document.

Severity None Low Med High Critical

Lower Bound 0.0 0.1 4.0 7.0 9.0
Upper Bound 0.0 3.9 6.9 8.9 10.0

data, the engine will check if the word ‘CVE’ appears in the input data
in order to retrieve the complete CVE number (i.e., CVE-AAAA-NNNN).

If a CVE is found, the engine checks for its associated Common
Vulnerability Scoring System (CVSS) [52]. More specifically, the engine
will search for its associated base score, which considers access vec-
tor, access complexity, authentication, and impact related information
based on availability, confidentiality and integrity. Depending on the
CVSS score, the vulnerability is labeled as none, low, medium, high or
critical, as shown in Table 3.

Each evaluated feature is assigned an individual score based on the
defined threshold (e.g., from 1 to 5) that will indicate the level of
impact of the feature with respect to the event. We define the variable
‘‘Score_CVE’’ that will compute the individual score value assigned
to the presence of a CVE in the input data based on the conditions
described in Table 4.

Other features (e.g., source/Destination IP, creation and validity
timestamps, etc.) may use higher or lower values in the assignment
process. Such individual values are then tuned in the training and
calibration processes so that the final threat score reduces the number
of false positives and negatives.
9

4.3. Weighting criteria

The second part of the (𝑇𝑆) function corresponds to the weighting
criteria (𝑃𝑖). According to Henry Dalziel [53], Threat Intelligence refers
to specific information that must meet three specific criteria: (i) it
must be relevant, for the entity who receives it, (ii) actionable and
(iii) valuable, from a business perspective. In [54] the concept of
‘‘actionable information’’ is defined by the European Union Agency for
Network and Information Security (ENISA), from an organization point
of view as the information that can be used immediately for specific and
strategical decision making. Considering [31] and [54], in order to be
‘‘actionable’’, information must meet the following criteria:

Relevance:. It must have some impacts on specific receiver’s assets,
such as networks, software and hardware. That is, indicators of com-
promise will usually be considered relevant when a threat could affect
the monitored infrastructure. In order to determine the relevance, it is
crucial to determine types of threats targeting your assets/systems, con-
sidering real-time information (e.g., IoC), from many internal sources,
because they are able to provide dynamic and continuous information
about current internal monitoring operation, together with a global
view of the infrastructure status.

In our analysis, this criterion evaluates if the information associated
to a given attribute is useful to identify a threat. Relevance is computed
as shown in Table 5.

Timeliness:. Threat intelligence is more reliable when it allows detect-
ing attacker’s activity, especially during the same intrusion, to monitor
how it evolves during time. Moreover, information about events older
than a few hours are, most of the times, irrelevant and non-actionable
due to the dynamic nature of some threat’s characteristics, considering

https://www.first.org/cvss/specification-document
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Table 4
Examples of individual threat score.

Criteria Condition Score

No CVE, or CVE exists with CVSS ‘none’ or 0.0 If CVE ≠ ’’ & CVSS = ‘none’ ∣ CVSS = 0.0 1
CVE exists with CVSS ‘low’ or less than 4.0 If CVE ≠ ’’ & CVSS = ‘low’ ∣ CVSS ≤ 4.0 2
CVE exists with CVSS ‘medium’ or less than 7.0 If CVE ≠ ’’ & CVSS = ‘med’ ∣ CVSS ≤ 7.0 3
CVE exists with CVSS ‘high’ or less than 9.0 If CVE ≠ ’’ & CVSS = ‘high’ ∣ CVSS ≤ 9.0 4
CVE exists with CVSS ‘critical’ or less than 10.0 If CVE ≠ ’’ & CVSS = ‘critical’ ∣ CVSS ≤ 10.0 5
Table 5
Weighting criteria values.

Relevance Score Timeliness Score Accuracy Score Variety Score

No data 1 No data 1 No data 1 No data 1
Attribute has some data with
no match

2 Attribute has never been seen 2 Optional Attribute 2 Data come from one source 2

Attribute does not identify
threat but helps in the
analysis

3 Attribute has been seen with
the same value

3 There is a match of one
source and the infrastructure

3 Data come from two sources 3

Attribute is useful to identify
threat

4 Attribute has been seen with a
different value once

4 There is a match of two
sources and the infrastructure

4 Data come from more than
two sources

4

Mandatory attribute to
identify threat

5 Attribute has been seen with a
different value more than once

5 There is a match of more than
two sources and the
infrastructure

5 Data come from all sources 5
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that some of them are discovered and analyzed months after the initial
compromise.

In our analysis, this criterion evaluates if a detected event is related
to an already detected one, by the infrastructure or by the OSINT-
based components, and if for instance, such events refer to the same
threat, but with a different level of intrusion, providing new or updated
information. Timeliness is computed as shown in Table 5.

Accuracy:. The receiver side should be able to process the received
ata as soon as possible. It depends mainly on three factors, which are
he confident of the source from which data is retrieved, the trust level
laced in those sources (which, in turn, could depend on factors such
s false positives/false negatives rates) and the local dynamic context
f the receiver. The latter is crucial in order to avoid inaccurate results
nd efforts when dealing with incident response.

In our analysis, information coming from OSINT-based components
ill be compared to the information coming from the infrastructure, if

here is a match of one or more attributes, a score will be computed.
ccuracy is computed as shown in Table 5.

ariety:. Detection and prevention should not rely on a single tech-
ique or tool. It is crucial to use a combination of systems, tools
e.g., IDS, IPS and Firewalls) and sources (e.g., OSINT), especially when
hey are able to detect the threat at different levels of intrusions (kill
hain phases).

In our analysis, this criterion evaluates the sources from where the
nformation is originated or detected e.g., infrastructure, OSINT-based
omponents. Variety is computed as shown in Table 5.

ngestibility:. Received information must be easy to ingest into internal
ata management systems for further processing and analysis phases.
his is achievable using specific standards for representing this data,
llowing the receiver to process data as fast as possible, helping also
ecurity analysts, as well as through the usage of specific transfer
rotocols for sharing the related intelligence.

Ingestibility is not considered in our analysis since we are assuming
hat all received data is expressed in a structured way and uses a spe-
ific standard format to be processed in the system. The data collection
ill be handled directly by the MISP instance. This criterion would
ave been meaningful in case of reception of unstructured information,
ut this scenario is not considered by the threat intelligence sharing
latform. The analysis will focus on other criteria with the possibility
f adding new ones in the future.
10
Completeness:. Threat intelligence should provide valuable and com-
plete information to the final receiver, evaluated from the local cyber
context point of view of the latter. Sometimes, sources are incomplete
when considered alone, but their provided data become actionable
once combined or processed with other internal data available to the
destination or received from other external sources.

In our analysis, this criterion is used as an overall assessment of
the heuristic and not for individual score evaluation of the attributes.
Each heuristic is composed of one or more attributes (e.g., CVE is
composed of six attributes: (i) no_cve, (ii) cvss_none, (iii) cvss_low, (iv)
cvss_medium, (v) cvss_high, (vi) cvss_critical. Completeness is measured
as the number of attributes with a non-empty value over the total
number of attributes, as shown in Eq. (2).

𝐶𝑝 =
𝑁𝑜𝑛_𝐸𝑚𝑝𝑡𝑦_𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

𝑇 𝑜𝑡𝑎𝑙_𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 (2)

In order to perform the heuristic analysis, a value (𝑋𝑖) must be
assigned to each feature (e.g., from 1 to 5). These values correspond to
the detected attributes and scores from Table 2 and are based on expert
knowledge. They correspond to the usefulness of the criteria in iden-
tifying possible threats, malfunctions or anomalies in the monitored
infrastructure.

In addition, each feature is affected by a weighting factor (𝑃𝑖)
composed of four criteria: Relevance (R), Accuracy (A), Timeliness (T),
and Variety (V). The weighing factor criteria is assessed based on expert
knowledge, which determines the 𝑃𝑖 value as the total number of points
ssociated with a given feature over the total number of points of all
eatures. Section 5 presents a concrete example of the calculation of
hese values.

Please note that the proposed threat score is based on Eqs. (1) and
2), which are defined considering a set of heuristics features taken
rom the information received from the STIX Domain Objects and those
ontrasted with the infrastructure. Information provided in Tables 1–
are taking from the literature and re-engineered to be adapted to

he described methodology. Attributes and scores are assigned based
n expert knowledge and statistical analysis. In addition, although the
eighting factor criteria follows the approach of actionable information
roposed by ENISA, the categories and scores listed in Table 5 have
een carefully defined for the implementation of our component and
an be claimed as one of our main contributions. It is worth noting that
ur approach can be extended with other heuristics, new attributes and
dditional criteria in the weighting factor evaluation that could incor-
orate meaningful values to compute the threat score from the data
eceived about threats and malicious events affecting the monitored
nfrastructure.
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Table 6
Infrastructure Inventory.

Nodes Names Applications

Node 1 OwnCloud Server ubuntu, owncloud, ossec, snort, suricata,
nids, hids

Node 2 GitLab Server ubuntu, gitlab, ossec, snort, suricata, nids,
hids

Node 3 XL-SIEM Agent ubuntu, snort, suricata, nids, php

Node 4 XL-SIEM Server debian, apache, apache storm, apache
zookeeper, apache struts, mysql, nessus,
openvas

All Nodes – linux

5. Case study: MySQL server vulnerability

We have defined an inventory of the infrastructure’s network with
nodes and the applications already installed. Every eIoC is checked
against this information and, if there is a match, the rIoC is generated,
associated with a specific node, and, finally, sent to the Output Module.
If there is no match, the rIoC is not generated, while, if the match is
with a common keyword (e.g., Linux), the new rIoC is associated with
all nodes. Table 6 summarizes this information.

Please note that before using ETIP, we need to tune the tool using
samples of data from the monitored infrastructure. At this point, it is
possible to update the values of some attributes composing the threat
score evaluation. For instance, instead of assigning a value of 3 to CVEs
with medium impact base score, security administrators may consider
to assign a value of 2 or 4. End-users are responsible of calibrating
the tool according to their infrastructure and data to evaluate. If no
calibration is done, the tool will perform the analysis based on the
pre-defined values assigned to the corresponding heuristics attributes.

5.1. Input data

An Indicator of Compromise associated with a specific vulnerability
was received: CVE-2019-2834: Vulnerability in the MySQL Server com-
ponent of Oracle MySQL. The severity of this vulnerability is assessed
as medium, with CVSS3 v3.0 equals to 6.5.

The input module receives this IoC, processes it, and sends the
resulting cIoC to the Data Correlator & Exporter (belonging to MISP)
of the Operational Module through a set of API provided by the MISP
instance. A specific open source library, written in Python, called
PyMISP,4 exists to interact directly with the MISP platform.

An event coming from the Infrastructure Data Collector is simply
stored internally and used later during the heuristic analysis for the
threat score evaluation. The other events, instead, which come from
the OSINT Data Collector, trigger a built-in automated, and real-time,
sharing mechanism, based on the asynchronous messaging library ze-
romq,5allowing the Heuristic Component to receive them, in STIX 2.0
format, and start the correlation with the stored infrastructure data.
Once the threat score is computed, the eIoC is generated enriching the
MISP JSON version of the cIoC, stored in the MISP database, adding
the threat score as a new MISP attribute.

Therefore, the heuristic component receives the cIoC regarding the
MySQL vulnerability, combines it with the data it receives from the
infrastructure’s network and evaluates the result, obtaining both eIoC
and threat score.

3 https://nvd.nist.gov/vuln/detail/CVE-2019-2834.
4 https://github.com/MISP/PyMISP.
5
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http://zeromq.org/.
Table 7
Threat Score Results.

Feature 𝑋𝑖 R A T V Total 𝑃𝑖

operating_system 3 4 5 5 3 17 0.1429
source_diversity 3 3 4 5 4 16 0.1345
application 5 4 3 4 4 15 0.1261
vuln_app_in_alarm 5 2 2 3 3 10 0.8040
modified/created 3 3 2 2 2 9 0.0756
valid_from 3 3 2 3 1 9 0.0756
valid_until 5 3 2 4 1 10 0.0840
external_references 4 4 5 4 3 16 0.1343
CVE 3 5 4 5 3 17 0.1429

5.2. Preliminary results

By contrasting the information of cIoC with the list of features
presented in Table 2, we identified that the reported security incident:
- affects the Debian OS and the MySQL; - was first reported from
OSINT; - there are no alerts from the monitored infrastructure related
to MySQL application; - was created and last modified on 2019-09-
13; - is valid for one year; - there exists external references from the
Common Attack Pattern Enumeration and Classification (CAPEC6) and
he Common Vulnerabilities and Exposures (CVE7).

Table 7 summarizes the assessment results associated with the cIoC
rom a remote code execution. Each feature is assigned a heuristic
alue, for instance, according to the description of the incident, the
ffected operating system is Debian, therefore 𝑋𝑖 = 3 for this feature,
he CVE has a medium CVSS, therefore 𝑋𝑖 = 3 for this feature.

The value of 𝑃𝑖 is computed after the RATV assessment (following
he guidelines from Table 5). The total RATV value for this example
s 119, from which the feature about operating system has computed
7 points, therefore 𝑃𝑖 = 17/119 = 0.1429. The process is repeated for
very feature.

Following Eq. (1), and using the scores values presented in Ta-
le 7, we compute the threat score for the MySQL vulnerability as:
𝑆(𝑀𝑦𝑆𝑄𝐿) = 9

9 ×
(
∑𝑡

𝑖=1 𝑋𝑖 × 𝑃𝑖
)

= 3.72 (more examples of Threat
Score computation and details on the use case analysis can be found
at https://caisplatform.wixsite.com/english).

5.3. Information sharing and visualization

Fig. 6 depicts the visualization data related to the affected node
in our proposed platform. Please note that the visualization data pre-
sented by ETIP are related to the network topology, the assets that
belong to the infrastructure, and the security data related to each asset
(e.g., alarms, vulnerabilities, threat score data).

The left part of Fig. 6 shows the affected node (i.e., XL-SIEM
SERVER) with two associated alarms, both with low severity (green)
and four reduced IoCs; as well as more details about the node, such
as node type, IP address, operating system. The right part of Fig. 6
provides the information contained in alarms (green) and rIoCs (blue).
These detailed information is obtaining by clicking on top of the node
graphical representation.

As shown in Fig. 6 a reduced IoC (rIoC) is generated by ETIP re-
garding the CVE-2019-2834 vulnerability the platform received, which
contains the information we presented above (i.e., CVE, description,
and the affected infrastructure). A Threat Score of 3.72 points indicates
the associated severity of the vulnerability with the identified CVE ID,
which helps security analysts in their prioritization of security actions.

6 https://capec.mitre.org/.
7 https://cve.mitre.org/.

https://nvd.nist.gov/vuln/detail/CVE-2019-2834
https://github.com/MISP/PyMISP
http://zeromq.org/
https://caisplatform.wixsite.com/english
https://capec.mitre.org/
https://cve.mitre.org/
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Fig. 6. Security visualization data.
6. Evaluation of ETIP components and analysis of results

In this section we will illustrate the advantages of our approach,
and the benefits our platform will bring in terms of prioritizing threat
information received from external sources (e.g., OSINT). We will use
the Threat Intelligence Sharing Module to evaluate relevance, accuracy,
and other features on the information received from the OSINT Data
Collector Module in the form of composed IoCs. For the threat score
evaluation we will consider both: the data coming from the infrastruc-
ture through security systems and tools (e.g., SIEMs, IDS), as well as the
cIoCs obtained by open source and public feeds. The resulting threat
score will be inserted in the information associated with the analyzed
cIoC. The higher the threat score value, the higher the priority of the
associated information when handled by incident response teams and
security analysts.

The OSINT Data Collector module will provide both: single and
composed IoCs to the Threat Intelligence Sharing module. We expect
that the composed IoCs will have an associated threat score higher than
the threat score of each single IoCs they contain. The entire process
considered in this use case is characterized by four sequential phases:
Collecting and Aggregating phases, performed by the OSINT Data
Collector module, followed by the Sharing phase, which involves both
modules, and the TS Evaluation phase, completely handled by the
Threat Intelligence Sharing module.

6.1. Collecting phase:

In order to collect OSINT data we configured a MISP instance with
34 OSINT feeds from higher value information (e.g., CVE vulnerabil-
ities) and low value information (e.g., IP blacklists). These feeds are
provided by diverse public free entities and reach MISP in different
formats, such as csv and txt files. OSINT data are normalized in a
single format, namely the MISP format, and then stored as IoCs in the
MISP database. Afterwards, the Deduplicator module we developed is
executed to load the IoCs and search for duplicates to delete them. This
12
task allows improving MISP in two forms: identify duplicated IoCs and
reduce the quantity of data stored, and therefore, increasing the MISP
performance.

6.2. Aggregating phase:

After removing the duplicated IoCs, the IoC Aggregator component
analyzes the resulting IoCs to look for connections among them. For the
connections found, the aggregator puts the involved IoCs in the same
group of IoCs, since they are related to the same malicious threat. At
the end, we have several and different groups of IoCs forming clusters,
each one for a particular threat category. At the point of view of a
threat category, a cluster can contain IoCs correlated between them and
related with a same (sub-)threat (or attack) and possibly with other
valuable malicious information that can be provided in a same IoC.
This means that a cluster can contain sub-clusters of IoCs regarding to
different attacks. Such sub-clusters can well characterize, this point of
view, attacks that have been executed, for which individual IoCs could
not allow their identification. Finally, each sub-cluster is represented
as one IoC, i.e., all its IoCs are merged in a single one, generating a
composed IoC, and then, they are stored in the MISP database.

6.3. Sharing phase:

The final outcome of the OSINT Data Collector module is sent to the
threat intelligence sharing module for proceeding with the computation
of the threat score. This integration is achieved easily thanks to the
adoption of MISP.

More precisely, two different MISP instances are used, one by each
module. For simplicity, and for facilitating reader comprehension, we
will refer to them as 𝑀𝐼𝑆𝑃𝐴 and 𝑀𝐼𝑆𝑃𝐵 , respectively. These instances
have been synchronized between each other to allow a real-time and
completely automated information sharing, following the guidelines
provided in the MISP book [38] for setting up a MISP synchronization
server on 𝑀𝐼𝑆𝑃 . This server has been associated with a specific user
𝐴
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with synchronization privileges, which is replicated in both instances.
Injecting, and publishing IoCs in 𝑀𝐼𝑆𝑃𝐴 on behalf of this user, triggers

push operation of one or more IoCs directly on 𝑀𝐼𝑆𝑃𝐵 , completing
he one-way information sharing needed for this use case scenario.

When the synchronization server is set up, the sync user authenti-
ation key must be specified. This information is provided by 𝑀𝐼𝑆𝑃𝐵 ,
hen the user is created.

.4. TS evaluation phase:

In order to perform the computation of the threat score, 𝑀𝐼𝑆𝑃𝐵
eeds to be extended with new functionalities. For this specific use
ase, we developed a new MISP export module, integrating it with the
ore software of the platform, following the guidelines [55] provided
y the MISP community and developers. In this way, the module is
vailable directly from the MISP UI, where it can be triggered manually
y the user for a specific IoC, to retrieve and send the IoC directly to
he Heuristic Module of the platform (Fig. 4), where the threat score
unction has been implemented, and added to the original IoC as a new
ISP attribute.

Aiming at correlating cIoCs with infrastructure data, as well as with
ther useful information about cyber events from open source and
ublic feeds, a MongoDB [42] database is used, and the information
s stored as JSON documents. The final IoC (i.e., enriched IoC) could
e shared with specific security tools or internal SOCs and CSIRTs,
ith the additional threat score used for determining the priority of the

ontained data, in case of some defense activities would be needed.
To provide practical examples of the functionality of our platform,

leven samples of composed IoCs were considered, and the entire pro-
ess previously described was executed in each of them. As a result, the
hreat score (𝑇𝑆) is computed for every single IoC (𝑠𝐼𝑜𝐶) integrating
he composed ones, making it possible to compare with the threat score
omputed for the composed IoCs (𝑐𝐼𝑜𝐶).

The internal dataset used for the correlation is composed by events
etected by the proprietary Cross-Layer SIEM (XL-SIEM) [56], and a
et of blacklisted IP addresses, malicious URLs and domain names,
etrieved from some MISP Open Source feeds [23].

For the heuristic analysis, a subset of nine MISP attributes [38]
as selected, composed of the ones which are more relevant according

o the monitored infrastructure (i.e., vulnerability, filename, src-IP,
st-IP, hostname, domain, url, link, and md5). This does not mean
hat other attributes are discarded, they simply have a higher impor-
ance when specific criteria are evaluated, especially for relevance and
ompleteness.

Results are summarized in Table 8 when we evaluate these IoCs with
TIP.8 Each row of the table is associated with a sample of composed
oCs (e.g., 𝑆1,. . . ,𝑆11), specifying the number of single IoCs (𝑠𝐼𝑜𝐶)
omposing them, their individual Threat Score (𝑇𝑆), and the global
S of the composed IoC (𝑐𝐼𝑜𝐶).

As depicted in Table 8, in most of the cases, the 𝑇𝑆 of the composed
oCs is higher than the 𝑇𝑆 for each of the related single ones. This
mprovement is strictly dependent on two main factors:

1. The number of attributes present in the IoC. The higher this
number, the higher the probability of increasing the overall
quality when the aggregation is performed; and

2. The quality of the single IoCs. The higher the quality of the in-
formation found in the attributes present in the sIoCs, the lower
the probability to increase the overall quality when aggregating
several IoCs.

8 More information about ETIP platform can be found in https://
caisplatform.wixsite.com/english.
13
For the first factor, cIoCs 𝑆6 and 𝑆9 have a high number of single
oCs (17 and 11 IoCs respectively), for which the global 𝑇𝑆 of them has

greatly improved compared to the one of each 𝑠𝐼𝑜𝐶. More precisely, the
highest sIoC threat score in 𝑆6 is 2.66, whereas the corresponding cIoC
threat score is 3.98.

For the second factor, we have cIoCs 𝑆2, 𝑆3, 𝑆7, and 𝑆10, in which
the aggregation process is not able to add a relevant level of quality
to the final IoC, the cIoC. In these cases, the quality of the information
identified in the 𝑠𝐼𝑜𝐶 samples results in high 𝑇𝑆 values. Although in
most of the cases, the 𝑇𝑆 value of the 𝑐𝐼𝑜𝐶 is higher than the one
associated to each 𝑠𝐼𝑜𝐶, the improvement is low, having in some cases
a lower 𝑇𝑆 value in the 𝑐𝐼𝑜𝐶 compared to one of the 𝑠𝐼𝑜𝐶 (i.e., 𝑆7).

It is important to note that among all the criteria used in the 𝑇𝑆
computation, the completeness (i.e., 𝐶𝑝) is the criterion that affects the

ost the final result. Whereas, all other criteria are adding individual
alues to the 𝑇𝑆, the completeness criterion is multiplying to the
verall addition, affecting to a higher level the 𝑇𝑆 results of single or
omposed IoCs.

However, this is not always true. Indeed, the only example where
he Threat Score of the composed IoC is lower than one or more single
oCs (two in this specific case) is the one where 7 single IoCs are
onsidered. This is caused by the second e factors mentioned above.
hen some single IoCs have already a good quality with respect to

he others, it happens that the aggregation process, which does not
onsider any known information about the monitored infrastructure,
nstead of improving the overall quality of the final IoC, fills it with
ess relevant information than the one inherited from the ‘‘good’’ single
oCs, obtaining the decrease of the Threat Score. These specific sub-
ases are not predictable, because we do not actually know what kind
f single IoCs the Operational module will receive from the OSINT Data
ollector component, which is not aware of the peculiarities of the

nfrastructure monitored by the former.
In a similar way, when few single IoCs are considered, the aggrega-

ion process is not able to add a relevant level of quality to the final IoC,
s can be checked consulting the cases with 2 or 3 single IoCs. They are
ot characterized by huge differences in terms of Threat Scores, indeed
he Threat Score of the final IoC will still be higher, but, at the same
ime, very close to ones evaluated for the singles.

. Conclusions and perspective for future work

This paper presents ETIP, an enriching threat intelligence platform,
s an extended import, quality assessment processes and information
haring capabilities in current Threat Intelligence Platforms (TIPs).
he proposed platform gathers and processes structured information
rom external sources (e.g., OSINT sources) and from the monitored
rganization’s network infrastructure. ETIP is composed of three main
odules: (i) a Input Module, in charge of collecting, normalizing,
rocessing and aggregating indicators of compromise (IoCs) from OS-
NT feeds, and collecting static and real time information from the
onitored infrastructure; (ii) an Operational Module, able to correlate

oth collected data to generate enriched IoCs, and assess this new data
y scoring the threat information it comprises; and (iii) an Output Mod-
le, aiming at presenting results graphically and sharing them among
xternal entities to improve the prevention and detection capabilities
f defense mechanisms (e.g., SiEMs, IDS) against cybercrime.

The ETIP platform computes a Threat Score (𝑇𝑆) associated with
each IoC before sharing it with both internal monitoring systems and
tools and trusted external parties. Enriched IoCs will contain a threat
score that will enable SOC analysts to prioritize the analysis of security
incidents. The 𝑇𝑆 evaluates heuristics with two types of weights: (i)
individual weights assigned to every attribute (e.g., relevance, accu-
racy, variety, etc.); and (ii) global weight (i.e., completeness criterion)
assigned to the heuristic. The higher the 𝑇𝑆 value, the more reliable
the IoC. Thus, as the 𝑇𝑆 value approaches to zero, the IoC can be

https://caisplatform.wixsite.com/english
https://caisplatform.wixsite.com/english
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Table 8
Threat Score results of composed IoCs and their individual IoCs.

Samples N. of sIoCs Individual TS Global TS

𝑆1 5 1.86, 2,55, 1.80, 0.71, 1.94 3.18
𝑆2 3 1.43, 2.32, 1,58 2.53
𝑆3 3 2.48, 1.54, 1.09 2.87
𝑆4 6 1.18, 1.40, 1.54, 0.64, 1.41, 2.03 3.07
𝑆5 2 2.84, 1.66 3.22
𝑆6 17 1.39, 2.22, 2.21, 1.99, 1.87, 0.70, 1.66, 1.10, 0.56, 0.96, 0.94, 0.56, 1.58, 2.66, 2.27, 1.36, 1.08 3.98
𝑆7 7 2.09, 3.27, 1.89, 0.89, 2.88, 1.93, 1.66 2.84
𝑆8 4 3.06, 2.68, 2.11, 1.55 3.11
𝑆9 11 1.66, 1.21, 2.35, 1.92, 1.33, 1.29, 1.6, 0.90, 0.88, 1.02, 0.56 4.13
𝑆10 2 2.43, 2.31 2.54
𝑆11 2 0.99, 0.55 1.29
considered as poor, incomplete and/or not reliable with a very low
priority level.

The paper also presents an evaluation of ETIP in a real use-case
cenario and an assessment of its components, by evaluating them with
ggregated IoCs and single IoCs that compose the aggregated ones. In
oth evaluations we verified that the former is valuable to represent
hreats since they relate information of different IoCs regarding the
ame threat, complementing thus each other. Also, some single IoCs,
hen analyzed individually, do not add value in the detection of threats

ince they do not carry relevant information about a given threat,
ut when aggregated with other IoCs they contribute to complete the
nformation about the threat. In addition, the 𝑇𝑆 of aggregated IoCs is
igher than their single IoCs, denoting that the heuristics we proposed
o evaluate the threat score are reliable and capable of measuring
hreats. Finally, thanks to the aggregation of IoCs and their correlation
ith the organization’s infrastructure data, it was possible to detect a
ulnerability in the MySQL DBMS used in the real use-case scenario,
hich was not possible by only analyzing both types of data separately.

ETIP has been tested and validated in production and operational
nvironments using three industrial SIEM solutions: Micro Focus Arc-
igh,9 SIEMonster,10 and the XL-SIEM [56], for which, the generated
utput has been connected with the Malware Information Sharing
latform (MISP). Results have shown a promising and interesting ap-
roach to assess the relevance of data coming from internal components
e.g., infrastructure data) and external components (e.g., OSINT data)
n the detection of threats and malicious network activities. Future
ork will focus on performing additional testing and validation of the

omponents, heuristics and attributes used in the analysis of IoCs. In
ddition, we plan to develop new attributes to enrich the threat score
nalysis, improving the quality of the refined threat intelligence to
e shared, providing not only the final threat score, but also detailed
nformation about each single criterion used in the evaluation, which
n turn helps to improve threat detection and incident response. Fur-
hermore, it is important to use functions based on precision and recall
arameters, to evaluate the performance of the proposed solution and
ompare up to which extent false rates are minimized.
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