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Today’s threats use multiple means of propagation, such as social engineering, email, and application vulnera-
bilities, and often operate in different phases, such as single device compromise, lateral network movement
and data exfiltration. These complex threats rely on advanced persistent threats (APTs) supported by well-
advanced tactics for appearing unknown to traditional security defences. As organisations realise that attacks
are increasing in size and complexity, cyber threat intelligence (TI) is growing in popularity and use. This
trend followed the evolution of APTs as they require a different level of response that is more specific to
the organisation. TI can be obtained via many formats, being open-source intelligence (OSINT) one of the
most common; and using threat intelligence platforms (TIPs) that aid organisations to consume, produce and
share TI. TIPs have multiple advantages that enable organisations to quickly bootstrap the core processes of
collecting, analysing and sharing threat-related information. However, current TIPs have some limitations
that prevent their mass adoption. This paper proposes AECCP, a platform that addresses some of the TIPs
limitations. AECCP improves quality TI by classifying it accordingly a single unified taxonomy, removing the
information with low value, enriching it with valuable information from OSINT sources, and aggregating it
for complementing information associated with the same threat. AECCP was validated and evaluated with
three datasets of events and compared with two other platforms, showing that it can generate quality TI
automatically and help security analysts analyse security incidents in less time.

CCS Concepts: • Security and privacy→ Intrusion detection systems; Domain-specific security and
privacy architectures; • Information systems → Information extraction; Clustering and classifica-
tion.
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1 INTRODUCTION
In today’s world, most organisations are digital, operating with technologies and processes of
the Internet era. The changes in IT infrastructure and usage models, including mobility, cloud
computing, and virtualisation, have dissolved traditional enterprise security perimeters, creating a
vast attack surface for hackers and other threat actors [45]. Managing the digital landscape in which
an organisation operates is a challenge that has never been more difficult, turning an organisation
vulnerable to many forms of attack.

Not only the digital landscape has evolved, but there has also been a significant evolution in
cyber threats, as adversaries have advanced their knowledge. They have deployed increasingly
sophisticated means of circumventing individual controls within users’ local environments and
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probed further into their systems to execute well-planned and orchestrated attacks [44]. With the
increase of the digital landscape and the threat landscape complexity, organisations are more likely
to be targeted and suffer a severe cyber-attack, with high financial and reputational impact. The
high probability and impact of cyber-attacks, in addition to the significant regulatory pressure to
protect the information, such as the European Union’s General Data Protection Regulation, are
encouraging organisations to look for new solutions to reduce their vulnerabilities [14].

One domain that has emerged during the past decade is cyber threat intelligence (CTI or TI for
short). This new domain combines key aspects from incident response and traditional intelligence,
and it can be defined as "the process and product resulting from the interpretation of raw data
into information that meets a requirement as it relates to the adversaries that have the intent,
opportunity and capability to do harm" [38]. However, compared to other cyber domains, such as
incident response and security operations, TI is still in the early adoption phase, limited by the
lack of suitable technologies, known as threat intelligence platforms (TIPs) [45][47]. Although
organisations recognise the potentiality of TI, the lack of tools that would help them manage the
collected information and convert it to actions is preventing the mass adoption of this kind of
solution.
With the emergence of new threat actors, like the advanced persistent threats (APTs), organ-

isations cannot rely on a single solution to protect from this type of threat. The static approach
of traditional security based on heuristic and signature does not match new threats known to
be evasive, resilient and complex. These complex threats rely on well-advanced tactics to appear
unknown to signature-based tools and yet authentic enough to bypass spam filters [16]. Today’s or-
ganisations must deploy a multi-layered defence to improve their chances of detecting or disrupting
an attack to fight these threats.
Under a form of open source intelligence (OSINT), TI information can provide knowledge to a

vast selection of systems and processes that form this multi-layered defence, such as anti-virus and
intrusion prevention systems and the processes that manage these solutions and review the events
generated by them. This knowledge can be collected from many sources using threat intelligence
platforms (TIPs). However, TIPs receive thousands of security events, which makes it hard to
analyse them to extract relevant data about threats. The volume and quality of data are the most
common barriers to effective information exchange. Also, shared data is often outdated and not
specific enough to aid the decision-making process, becoming unactionable [48]. The confidence
level of information is another barrier since most sources do not provide this information, forcing
security analysts (SOC) to put additional effort into evaluating and verifying the received data.
Also, most organisations cannot make valuable use of their threat data because there is too much,
approximately 250 to millions of indicators of compromise (IoC) per day [48]. Considering the
volume of shared threat information, most of the platforms end up being data warehouses rather
than platforms where threat information can be analysed. Moreover, the time-consuming SOC
analysts spent analysing and classifying incidents have increased due to this volume of data, not
valuable information and duplication of incident classification in several public incident taxonomies
(e.g., eCSIRT and ENISA). There are few platforms [3][18][1] that deal with these drawbacks. They
aggregate diverse OSINT data related to the same threat into a single event. At first, this approach
is beneficial, as it avoids the manual analysis of several individual events and the manual attempt to
establish their relationships. As a result, it will decrease the time spent by SOC analysts performing
this task. However, on the other hand, aggregating a set of events into one will increase the amount
of information that analysts must check. This amount can reach more than a thousand attributes
in an event, and, therefore, the time required to analyse it can be longer than the time needed to
analyse the set of events individually.
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This paper proposes the Automated Event Classification and Correlation Platform (AECCP) that
implements an approach to address some of TIPs limitations by generating highly information-rich
objects under a standard format and a single unified taxonomy (unified taxonomy (UT), for short),
with their threat categories characterised bymain threat attributes. Also, it correlates and aggregates
these objects into clusters of objects, generating thus quality TI that shares the same threat type
and other information. To improve the collection and automatic classification of actionable TI, as
well as to define the UT, we first need to understand the TI life cycle, the available information
sources and current TIPs, and to identify the main attributes that allow characterising each threat
category of UT. This requires working on all levels of the intelligence-gathering operation, using
an automated system to (i) receive data from multiple sources, (ii) improve the enrichment process
and validate the information collected by cross-referencing it, (iii) produce objects under a standard
format and taxonomy, (iv) store the obtained intelligence in such a way that it can be applied in the
optimisation of defence mechanisms. Moreover, by using a UT and the main threat attributes, the
problem that arose from the platforms aforementioned will be solved.
This paper is the first to (i) propose a unified taxonomy to classify security events, (ii) study

and identify the main attributes that better describe threat types, (iii) classify security events
automatically into an incident category and removes the overlap of classification tags, without
human intervention, and (iv) propose a platform to reduce the amount of information aggregated
in a single event, after an event correlation and clustering task. Moreover, our approach aims to
improve the response of threat analysts and all the systems used by the organisation against today’s
complex threats. In addition, it aims at finding ways to benefit from OSINT to increase the detection
capabilities of defence mechanisms, such as security information and event management systems
(SIEMS) or intrusion detection systems (IDS), reducing the number of false positives and negatives.

We validated and evaluated AECCP with three datasets of security events. Our results suggest
that AECCP can automatically classify TI into an incident category and generate new and enriched
TI that associate different security events regarding the same threat in a single way. Also, we
compared AECCP with two platforms from literature, and the results show that our approach
performs better than the others.

The main contributions of the paper are: (1) a single unified taxonomy to reduce the overlapping
of taxonomies with the same meaning and simplify the event classification while maintaining its
details. (2) the identification of the main attributes that characterise each incident category into the
proposed taxonomy, which will allow reducing the volume of shared information. (3) an approach
that aims to improve quality threat intelligence produced by TIPs by automatically classifying
and enriching it. The approach is composed of a set of modules, each one focused on one or more
limitations of TIPs and verified in our data analysis. (4) the AECCP and its assessment with three
event datasets and two other platforms.

2 BACKGROUND AND RELATEDWORK
2.1 Advanced Persistent Threats
Today’s generation threats are multi-vectored and often multistage, i.e., most attacks use multiple
means of propagation, such as social engineering, email, and application vulnerabilities, and most
attacks operate in different phases, such as single device compromise, lateral network movement,
and data exfiltration [48]. These complex threats rely on social engineering techniques, the latest
zero-day vulnerabilities, and well-advanced tactics for appearing unknown to signature-based tools
and yet authentic enough to bypass spam filters. Traditional security defences were developed to
inspect each attack vector as a separate path and each stage of an attack as an independent event,
failing in identifying and analysing an attack as an orchestrated series of cyber incidents [16].
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The advanced persistent threats (APT), being one of today’s generation threats that had a
significant impact on the rise of cybercrime, branched from young hackers in the Black Hat
community, whose objective was mayhem and reputation, to organised crime groups provided
by states and private entities [45]. Chen et al. characterise APTs and separate them from other
criminal enterprises online, being them: specific targets and clear objectives, highly organised and
well-resourced attackers, long-term campaigns with repeated attempts, and stealthy and evasive
techniques [5].

2.2 Open Source Intelligence (OSINT)
The earliest forms of open-source intelligence (OSINT) dates back to the SecondWorld War, marked
by the ability to find relevant information and combine it in a way that treats information as a
resource rather than a commodity [23][17]. OSINT can be defined as intelligence produced from
publicly available information (open-source information, OSINF), such as information gathered
from radio, television, newspapers, websites, blogs, papers, conferences, etc. Nowadays, due to the
development of the Internet, this type of information has become significantly more accessible
and cheaper to gather than the traditional public information acquired by clandestine services. In
comparison to other sources of information, like human intelligence, OSINF can sometimes provide
extra information and be a more reliable and safe way of acquiring intelligence [11].

To produce OSINT, OSINF is analysed, edited, filtered and validated. Moreover, the information
gathered is linkedwith other sources to verify, complement, and contextualise the collected data. The
more public available sources, the better intelligence will be produced [17][11]. OSINT has become
one of the most common forms of intelligence and is considered a goldmine for organisations
[36]. For instance, recent studies stated that valuable and early information can be provided by
social networks, such as Twitter [48][39]. One of the biggest advantages of using OSINT is the
cost, as it is much less expensive than traditional information-gathering tools. Additionally to the
cost advantage, OSINT has many benefits when it comes to sharing and accessing information,
as this latter can be legally and easily shared with anyone, and open sources are always available
and up to date [19]. However, OSINT has some constraints, such as the high quantity of available
information that needs to be processed to create valid intelligence, demanding a high amount of
work to extract useful information from the noise. This task requires a large amount of analytical
work from security specialists to distinguish valid, verified information from false, misleading or
inaccurate data. A final constraint of OSINT is that its production may not always provide the
needed answer since it only uses available information [19].

2.3 Threat Intelligence (TI)
Threat intelligence (TI) can be defined as "evidence-based knowledge, including context, mecha-
nisms, indicators (...) about the hazard to assets that can be used to inform decisions regarding the
subject’s response to that menace or hazard" [50].

In its simplest form, TI is the process of understanding the threats towards an organization based
on available information. However, there must also be an understanding of how the information
relates to the organization. Hence, it must be combined with contextual information to determine
relevant threats to the organization.Moreover, TI is valuable to an organization only if it is actionable.
If the Security Operation Center (SOC) cannot determine how to best respond, combat or mitigate
a threat to the organization, then the information provides little to no value [4]. Detecting incidents
sooner and potentially even preventing them is the overall goal of TI. Organizations often see TI as
a way to reinforce the environment and prepare for both known and unknown threats.
TI has grown in popularity and use amongst organizations as they realize that attacks have

increased in size and complexity. According to a CTI survey, 85.5% of respondents have at least one
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person responsible for consuming or producing TI in their organization and 7.1% of respondents plan
to have one shortly. This trend followed the evolution of targeted attacks and APTs as they require
a different level of response that is more specific to the organization [21]. Many organizations are
convinced that TI is a valuable tool to help them better understand their attackers.
As we stated, the objective of creating TI is the creation and delivery of a product that can be

acted upon. While threat intelligence professionals find value in sharing threat information through
informal and traditional communication channels, the results are inconsistent and unscalable.
Hence, better frameworks were needed for communicating TI to provide an adequate answer to
today’s complex threats. Such frameworks should include: standardized reporting terminology
and processes; benefit in information sharing for cybersecurity purposes; the ability for users
to create trusted communities; and, technical infrastructure to share and analyze TI at machine
speed. In the absence of an industry-standard framework, current sharing mechanisms include:
private or restricted face-to-face meetings and phone calls; emails, forums and message boards;
web portals with wiki-type capabilities; web portals acting as document management systems; web
portals (some with APIs) allowing downloads of structured data; and, web portals offering social
networking facilities with secure access and sharing controls [12].
TI represents security threat activities that are provided as a form of indicators of compromise

(IoC), i.e., information artefacts obtained from a forensic analysis that aggregate data on malicious
activity in a system or within a network that was attacked [26]. For sharing TI among entities and
security platforms and structuring its information, diverse standard formats have been proposed,
being OpenIoC [9], STIX [32], TAXII [33], CSV, and MISP format the most popular. However, its
use is not widespread and poorly implemented [37].

2.4 Threat Intelligence Platforms (TIP)
Threat intelligence sharing platforms (in short, threat intelligence platforms or TIPs) was introduced
to fill the industry-standard gap in TI sharing, and gaps and limitations of actual detection and
monitoring defence mechanisms placed in IT infrastructures [46]. In this sense, TIPs are used for
OSINT and TI collection and their processing, storage, sharing, and integration of their resulting data
with other security platforms and tools related to incident response and threat management (e.g.,
SOC, CSIRTs). They retrieve (structured and unstructured) data from several external sources (e.g.,
OSINT feeds) and process these data by applying various operations, such as filtering, normalization,
aggregation, and some correlation [3].

TIPs usually vary in the (1) objective: some are used to operational information while others may
be focused on long-term risk analysis, (2) the scope of their action: from accepting only processed
inputs to possessing natural language processing capacities, and (3) their capabilities: current
platforms range from data acquisition and storage to advanced analytics using machine learning.
Despite their differences, the functionalities of TIPs follow the steps of the threat intelligence
life cycle, namely planning and direction, collection, processing and exploitation, analysis and
production, dissemination and integration [4][20][25][34].

Since TIPs existence, their adoption by organizations has grown and played an important role in
spreading security threat activity among the collaborative entities working in this field. However,
their adoption and implementation are still in their infancy [43], having many limitations to be
resolved, e.g., automatic trust assessment and classification of TI and advanced capabilities of
analysis, where SOC intervention continue to be required to filter and retrieve TI information that
is relevant and effectively actionable.

There are some open-source TIPs that have been adopted by organizations, being the next four
those widely used [48]: MISP (the Malware Information Sharing Platform) [30], CIF (the Collective
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Intelligence Framework) [8], CRITs (the Collaborative Research Into Threats ) [31], and SoltraEdge
[22]; and being MISP the most popular.

2.5 MISP
MISP was initially created by the NATO Computer Incident Response Capability Technical Centre
(NCIRC TC) to implement the Smart Defence concept and, presently, is owned by the Computer
Incident Response Centre Luxembourg (CIRCL). One of the key concepts of MISP is the sharing of
intelligence among members of the same community [49][30].

Currently, MISP has not only, but mainly, the following capabilities: sharing; storage; automatic
correlation of indicators of compromise (IoCs); advanced filtering capabilities; export and import
of data in the most popular formats, namely STIX, OpenIOC, CSV and MISP standardized format
[49][10]. IoCs, also called MISP events, contain technical and general information of TI, which are
represented in MISP format and stored in a database of indicators.
A new entry in MISP’s database is called an event object, which can be defined as a set of

characteristics and all kinds of descriptions of an IoC. These characteristics and relevant information
are called attributes. Examples of attribute types are hash, filename, hostname and IP address. An
attribute can even be a complex object that contains multiple attributes. An example of a complex
attribute is an anti-virus signature, which can include the name of the anti-virus, the name of the
signature, and the detection date [49]. Furthermore, each attribute can be correlated with other
simple or complex attributes. Also, IoCs, when stored, are automatically correlated to describe the
relationships between attributes and indicators [10].

2.5.1 Taxonomies. Data classification is often bound to internal, community or national classifica-
tion schemes. One common problem is the mapping of events into categories. It is a complex task
since categories are not always known in advance. Since a centralised pre-defined set of definitions
that satisfies all the potential users is a hard challenge, MISP uses a distributed approach based onma-
chine tags. However, the freedom of defining tags can easily lead to a situation where multiple tags
have the same meaning, making filtering complicated. A new concept of tagging was introduced to
overcome this problem – the taxonomies. Taxonomy is based on a triple tag structure with a names-
pace, a predicate and a value, for example, [enisa:nefarious-activity-abuse="ransomware"].
This flexible concept allows classifying and tagging events following an organisation own classi-
fication schemes or existing taxonomies used by other organisations. A clear advantage of this
concept is the still human-readable format of the machine tags [49].

In its default configuration, MISP includes a set of public incident classification taxonomies [29],
where some of the most used of them are described next, and their tags are presented in Table 1 as
being recognised in the MISP tag structure.
• eCSIRT.net [7] (middle-high of column 1). This taxonomy was developed many years ago,
but the main categories are still current and can easily be used. On the other hand, the
subcategories can lead to problems with classifying an incident. Despite its defects, many
European Computer Security Incident Response Teams (CSIRTs) use it, which allow teams to
team up with others.
• CIRCL.LU [6] (middle-bottom of column 1). MISP owners and main contributors use their tax-
onomy for classifying incidents. With some similarities with eCSIRT.net taxonomy, CIRCL.LU
only has one level of classification.
• Microsoft implementation of CARO Naming Scheme [27] (second column). According to the
Computer Antivirus Research Organization (CARO) malware naming scheme, Microsoft
designates malware and unwanted software. This scheme was created by a committee at
CARO and was the first attempt to make malware naming consistent.
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Table 1. eCSIRT.net, CIRCL.LU and Microsoft implementation of CARO taxonomies recognized in the
MISP tag structure.

eCSIRT.net taxonomy main category Microsoft implementation of CARO Naming Scheme
ecsirt:abusive-content ms-caro-malware:malware-type="Adware"
ecsirt:malicious-code ms-caro-malware:malware-type="Backdoor"
ecsirt:information-gathering ms-caro-malware:malware-type="Behavior"
ecsirt:intrusion-attempts ms-caro-malware:malware-type="BroswerModifier"
ecsirt:intrusions ms-caro-malware:malware-type="Constructor"
ecsirt:availability ms-caro-malware:malware-type="DDoS"
ecsirt:information-content-security ms-caro-malware:malware-type="Dialer"
ecsirt:fraud ms-caro-malware:malware-type="DoS"
ecsirt:vulnerable ms-caro-malware:malware-type="Exploit"
ecsirt:other ms-caro-malware:malware-type="HackTool"
ecsirt:test ms-caro-malware:malware-type="Joke"

ms-caro-malware:malware-type="Misleading"
CIRCL.LU taxonomy ms-caro-malware:malware-type="MonitoringTool"
circl:incident-classification="spam" ms-caro-malware:malware-type="Program"
circl:incident-classification="system-compromise" ms-caro-malware:malware-type="PUA"
circl:incident-classification="scan" ms-caro-malware:malware-type="PWS"
circl:incident-classification="denial-of-service" ms-caro-malware:malware-type="Ransom"
circl:incident-classification="copyright-issue" ms-caro-malware:malware-type="RemoteAccess"
circl:incident-classification="phishing" ms-caro-malware:malware-type="Rogue"
circl:incident-classification="malware" ms-caro-malware:malware-type="SettingsModifier"
circl:incident-classification="XSS" ms-caro-malware:malware-type="SoftwareBundler"
circl:incident-classification="vulnerability" ms-caro-malware:malware-type="Spammer"
circl:incident-classification="fastflux" ms-caro-malware:malware-type="Spoofer"
circl:incident-classification="sql-injection" ms-caro-malware:malware-type="Spyware"
circl:incident-classification="information-leak" ms-caro-malware:malware-type="Tool"
circl:incident-classification="scam" ms-caro-malware:malware-type="Trojan"
circl:incident-classification="cryptojacking" ms-caro-malware:malware-type="TrojanClicker"
circl:incident-classification="locker" ms-caro-malware:malware-type="TrojanDownloader"
circl:incident-classification="screenlocker" ms-caro-malware:malware-type="TrojanDropper"
circl:incident-classification="wiper" ms-caro-malware:malware-type="TrojanNotifier"
circl:incident-classification="sextortion" ms-caro-malware:malware-type="TrojanProxy"

ms-caro-malware:malware-type="TrojanSpy"
ms-caro-malware:malware-type="VirTool"
ms-caro-malware:malware-type="Virus"
ms-caro-malware:malware-type="Worm"

2.6 Limitations of Threat Intelligence Platforms
TIPs have multiple advantages that enable organisations to easily bootstrap the core processes
of collecting, normalising, enriching, correlating, analysing, disseminating and sharing threat
information. However, current solutions have some limitations that prevent their mass adoption.
Next, we present the limitations related to the current state and usage of TIPs [13] [47][35].
• LT1 - Shared threat information is too voluminous. One of the problems is the overload of
threat information shared via open-source, commercial sources and communities. Combining
shared threat information from different sources makes the relevant intelligence hard to find
and makes it difficult to generate value.
• LT2 - Limited technology enablement in threat triage. There is limited technology enablement
to facilitate the relevancy determination process. Currently, this process is done manually, in
a complex way, and dependent on the analyst.
• LT3 - Data Quality. The confidence level of information is not provided by most of the feed,
forcing analysts to put additional effort into evaluating and verifying the received data.
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• LT4 - Limited analysis capabilities. Most TIPs have limited capabilities related to brows-
ing, attribute-based filtering, advanced searching information, pivoting, exploration and
visualisation.
• LT5 - Limited advanced analytics capabilities and automation tasks.Most TIPs have limited
capabilities related to aggregation, composition, generalisation of data, as well as the capability
to de-duplicate, tag and classify data automatically.
• LT6 - Focus on data collection. Considering the volume of shared threat information and
the limited analysis capabilities provided by TIPs, most of the platforms end up being data
warehouses rather than platforms where threat information can be shared and analysed.
• LT7 ? Limited threat knowledge management. No common vocabulary is used for describing
threat actors, tactics, techniques, procedures and tools.
• LT8 - Focus on tactical IoCs. Tactical indicators of compromise are mostly shared, lacking
comprehensive threat information. Standardised formats are underused or even not used
during information sharing, noting that most information is exchanged in unstructured files.
• LT9 - Trust related issues.Most TIPs have limitations in the way that organisations interact
and contribute to specific communities, and most platforms do not allow organisations to
share only specific types of threat data with particular communities.
• LT10 - Diverse data formats.While there are community efforts to provide connectors between
different standards and formats, converting information without losing any elements or
context from the source format is a challenge. Most TIPs tend to stay with one format,
limiting the flexibility of the TIP users.
• LT11 - Shared intelligence without expiration date. Currently, the time-to-live information is
not provided by most of the feeds, and TIPs have limited capabilities in handling this type of
metadata information.
• LT12 - Diverse APIs and requirements for integration. TIPs integrate with a standard set of
services and tools while the owners prioritise requests for additional integrations.
• LT13 - Limited workflow enablement. Currently, TIPs provide limited workflow capabilities
that would make the process of threat management more efficient, such as the capability of
stakeholders to send requests for information.

2.7 Platforms for Resolving Limitations of TIPs
A few platforms try to reduce some TIPs’ limitations and improve the TI processing.

PURE [3] is a platform that generates improved intelligence based on OSINT. This enhanced
intelligence translates into new enriched IoCs obtained by correlating and combining IoCs from
different OSINT feeds sharing information about the same threat. The novel cluster method used
by PURE allows the creation of clusters that can be summarised and converted into an enriched
IoC, allowing the discovery of unidentified patterns and the detection of new complex attacks. The
platform comprises the normalisation of the different IoC formats in a single one and compares the
IoCs received with the IoCs stored in the database to check the existence of duplicates. Besides
discarding the duplicated IoCs, it also discards those that provide no new information. The set of
IoCs of interest resulting from a filter step is sent to a clustering module, which applies similarity
and weighs metrics over them to aggregate similar and related IoCs to create quality TI. IoCs
belonging to a cluster are correlated to find the most relevant information that characterises a
threat and then converted into a single enriched IoC.
ETIP [15] [18] is a platform that extends the importing capabilities, the quality assessment

processes and the information-sharing capabilities in current TIPs. ETIP gathers and processes
structured information from external sources, such as OSINT and a monitored IT infrastructure.
It comprises two main modules: a composed IoC module, in charge of collecting, normalising,
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processing, and aggregating IoCs from OSINT feeds; and a context-aware intelligence sharing
module, able to correlate, assess and share static and real-time information with data obtained from
multiple OSINT sources. ETIP computes a threat score associated with each IoC before sharing
it with other tools and trusted external parties. Enriched IoCs produced by ETIP contain a threat
score that allows SOC analysts to prioritise the analysis of incidents. The threat score evaluates
heuristics with two weights: individual weights assigned to every attribute based on their relevance,
accuracy and variety, and; a global weight (i.e., completeness criterion) assigned to the heuristic.
The higher the threat score value, the more reliable the IoC.

SYNAPSE [1], a Twitter-based streaming threat monitor for threat detection in SOCs, implements
a pipeline that gathers tweets from a set of accounts, filters them based on the monitored infrastruc-
ture, and classifies the remaining tweets as either relevant or not. The pipeline is composed of a data
collector, a filter, pre-processing and feature extraction module, a classifier, and a clustering module.
The data collector requires a set of accounts, from which it will collect every posted tweet using
Twitter’s stream API. The filtering approach assumes that a tweet must mention a particular IT
infrastructure asset when referring to a threat to a specific IT infrastructure asset. Only tweets that
include at least one of the keywords will pass the filter. The pre-processing and feature extraction
module is then used to normalise the tweet representation before the classifier. Two classifiers
were explored for the classification of tweets according to their security relevance: Support Vector
Machines (SVM) and Multi-Layer Perceptron (MLP) Neural Networks. Finally, SYNAPSE uses
clustering to aggregate similar tweets in the news feed stream, adapting a Clustream algorithm
to achieve the desired threat aggregation. Relevant tweets are grouped in dynamic clusters and
presented as IoCs that can be manually inspected or fed to SIEMs and other TI tools.

Table 2 presents which TIPs limitations (stated in Section 2.6) are addressed by these platforms
(columns 3 to 5). They all have the main objective of creating quality TI through new analytical
approaches and in an automated way. The new TI is obtained by filtering and combining OSINT
associated with the same threat in a single security event. The concretisation of this objective
addresses the first six TIPs’ limitations (LT1 to LT6) since the resulting TI will allow decreasing
the amount of individual and not related data (security events) that SOC analysts must analyse.
However, on the other hand, this resulting TI as aggregates in a single event much more information
(the merging of several events) than those contained in individual events, the task to analyse this
quantity of data by SOC analysts can be more challenging. PURE and ETIP also deal with LT10
because they can receive OSINT in diverse formats. As ETIP consumes data from the organisation’s
IT infrastructure to analyse it jointly with OSINT and the resulting TI can be exported to be used
in defence mechanisms, it deals with LT8 and LT11, respectively. In turn, SYNAPSE also addresses
LT11 for the same reasons as ETIP.

Table 2. The TIPs limitations addressed by PURE, ETIP, SYNAPSE and AECCP platforms.

ID Limitation PURE ETIP SYNAPSE AECCP
LT1 Shared threat information is too voluminous x x x x
LT2 Limited technology enablement in threat triage x x x x
LT3 Data Quality x x x x
LT4 Limited analysis capabilities x x x x
LT5 Limited advanced analytics capabilities and tasks automation x x x x
LT6 Focus on data collection x x x x
LT7 Threat knowledge management limitations x
LT8 Focus on tactical IoCs x x
LT9 Trust related issues x
LT10 Diverse data formats x x x
LT11 Shared intelligence without expiration date x x x
LT12 Diverse APIs and requirements for integration
LT13 Limited workflow enablement
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The platform we propose – AECCP (last column of the table) – addresses all TIPs’ limitations,
except the last two (LT12 and LT13). Although AECCP shares the main objective of the other
platforms, it employs different types of analysis for filtering and combining data (detailed in Section
4). It gives a step further by proposing a UT and threat main attributes to classify OSINT data, which
both will allow reducing the amount of information consolidated in a single and resulting event
(something that the other platforms face), and, therefore, decrease the effort that SOC analysts must
employ in analysing such data. These valencies will treat the limitations of LT7 and LT9 and make
AECCP the first platform that achieves that. Also, it is the first platform that classifies security
events in incident categories and removes the existent overlap of classification of public taxonomies’
tags without human intervention, i.e., automatically. In addition, our platform consumes diverse
OSINT data formats (LT10) and external data (LT8) to improve the quality of TI, and the generated
TI can be shared and used in organisations’ defence mechanisms (LT11).

3 DATA ANALYSIS FOR AN UNIFIED TAXONOMY AND THREAT MAIN ATTRIBUTES
As we stated before, the primordial goal of this work is to address some of the limitations of TIPs,
described in Section 2.6. We manage all of them, except the last two (L12 and L13), focusing on the
first seven limitations. More specifically, we aim to solve those related to the processing of data in
the platforms, i.e., classify, analyze, and generate data automatically, minimizing thus the human
intervention in this process. However, to produce the most accurate and complete TI, we have to
consider resolving the other four limitations since they are related to these seven. For example, to
obtain more comprehensive data about a given attack, it is needed to consider and process OSINT
data that can come in diverse formats (L10). To address the limitations with an adequate solution
capable of treating and minimizing them, first, we had to understand such constraints. Hence, this
section presents the data analysis performed to obtain such understanding.
The analysis is based on MISP events, as MISP is the most open-source TIP adopted among

organizations. Therefore, the section firstly gives an overview of the data sources used to collect
the events and how the dataset used in the analysis was built (presented next). Secondly, it presents
an analysis of MISP taxonomies, which shows how the vast set of public incident classification
schemes included in MISP to classify the same threat can increase unnecessary complexity and
relevant information. To tackle this and decrease such unnecessary information, we propose a
single unified taxonomy which is defined in Section 3.2. In addition, an analysis of MISP event
attributes is provided, showing that too many attributes in a single event can also increase the
unnecessary complexity, specifically if they do not add useful information. To face this problem, we
propose a solution in Section 3.3 that involves discovering which are the most prevalent attributes
that underlie a threat. Finally, a brief explanation on how we can take advantage of references to
external platforms to increase the quality of TI is given in Section 3.4.

3.1 Data Sources and Dataset
The source information to get the dataset for analysis was provided from external OSINT feeds and
the TIP to collect and process them was MISP. MISP can process different feed formats, namely
MISP standardised format, CSV and free text. CSV and free text feeds are only parsed as MISP
Attributes and do not take advantage of all MISP functionalities. Contrarily, the MISP formatted
feeds can be parsed from simple MISP Attributes to the more complex MISP Objects and benefit
from all MISP functionalities. Therefore, we left aside CSV and free text feeds and worked only
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with MISP formatted feeds, resulting thus in the following three feeds: CIRCL OSINT Feed1, The
Botvrij.eu Data2, and inThreat OSINT Feed3.
From these three feeds, we collected 1,366 events published by 14 different organisations, such

as CIRCL, CUDESO, InThreat, CthuluSPRL.be, Synovus Financial, VK-Intel, ESET and NCSC-NL.
However, some of these events are dated to 2014, near the embryonic phase of MISP, meaning
poorer events with minimal information and more events containing collections of IoCs from
multiple attacks (e.g., blacklists). In contrast, recent events (since 2016) were richer in knowledge,
and many more events corresponded to one attack. Consequently, we shortened the initial dataset
only to contain richer events, resulting in 1,168 out of 1,366 events, in which most of them were
provided by CIRCL and CUDESO with 907 and 120 events, respectively.

3.2 Unified Taxonomy
Over the past decades, multiple cyber threat classification systems have been proposed, some
of them focus on the classification of actors and methods [35], while others focus on specific
techniques [28] or specific targets [40]. With more than 100 classification systems, this complex
array of taxonomies adds confusion when a security analyst manually analyses a threat and,
consequently, increases the time and effort he spends. This complexity is increased in MISP with
unnecessary information since an event can be classified by the analyst for a given incident with
different taxonomies, meaning that that event will have several tags with the same mean. For
example, an event classified as ransomware has five tags mapping different taxonomies, namely
[ecsirt:malicious-code="ransomware"], [malware_classification:malware-category="Ransomware"],
[veris:action:malware:variety="Ransomware"], [enisa:nefarious-activity-abuse="ransomware"], and
[ms-caro-malware:malware-type="Ransom"]. Based on this evidence, in this section, we present a
solution to reduce this complexity by proposing a single unified taxonomy (UT).

As previously explained, events in MISP are classified with tags following taxonomies, meaning
that a classified event requires having at least one tag. Our dataset based on this principle contains
1166 tagged events and 2 untagged events. However, a more detailed analysis showed that many of
the tagged events did not have a tag that allowed to classify them correctly into an incident category.
Only 691 (out of 1166) events were tagged into an incident category. Furthermore, we found that
several occurencies had multiple overlapping classification tags from different taxonomies, meaning
duplicated information about their type.

From the 1166 tagged events, 493 different tags were extracted. Table 3 shows the 16 most used
tags in their classification. A more extensive table can be found in Appendix A [24]. From the
extracted tags, only 13% of them (62) corresponded to a known incident classification taxonomy
(ID 4-6), meaning that most remaining tags did not add information about the type of the threat
but added information about its source (IDs 2, 8, 9 and 14) and its sharing, such as the Traffic Light
Protocol (TLP) and OSINT (IDs 1 and 3). Additionally, 61% of the tags (i.e., 302) corresponded to
MISP Galaxies. MISP Galaxies are highly customizable and can correspond not only to known
attacks (ID 7) but also to attack patterns, threat actors (ID 11) and tools (ID 13). Therefore, we
opted not to consider MISP Galaxy tags and the other tags referred to above as classification tags
due to the high heterogeneity and low information about the type of threat they carried. Hence,
for further analysis, we only considered the 62 tags associated with incident classification, which
belong to 10 different incident classification taxonomies (first 10 IDs of Table 4).

The UT we propose is based on structures of eCSIRT.net incident taxonomy and CARO malware
naming scheme, and it aims to simplify the event classification while maintaining its details. Also,
1https://www.circl.lu/doc/misp/feed-osint/
2http://www.botvrij.eu/data/feed-osint/
3https://feeds.inthreat.com/osint/misp/
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Table 3. The 16 most used tags in events.

ID Tag Hits ID Tag Hits
1 tlp:white 1133 9 osint:source-type="block-or-filter-list" 32
2 osint:source-type="blog-post" 275 10 circl:topic="finance" 31
3 Type:OSINT 273 11 misp-galaxy:threat-actor="Sofacy" 26
4 circl:incident-classification="malware" 218 12 OSINT 26
5 malware_classification:malware-category="Ransomware" 113 13 misp-galaxy:tool="Trick Bot" 24
6 ecsirt:malicious-code="ransomware" 98 14 osint:source-type="technical-report" 23
7 misp-galaxy:ransomware="Locky" 70 15 workflow:todo="expansion" 22
8 inthreat:event-src="feed-osint" 32 16 osint:lifetime=ephemeral 21

Table 4. The 10 taxonomies used for incident classification and the 22 of taxonomies analyzed to define the
unified taxonomy.

ID Taxonomy ID Taxonomy
1 CIRCL.LU taxonomy 12 Information security indicators from ETSI GS ISI
2 eCSIRT.net incident taxonomy 13 Malware Attribute Enumeration and Characterization (MAEC)
3 ENISA threat taxonomy 14 Reference Security Incident Classification Taxonomy
4 Microsoft implementation of CARO Naming Scheme 15 Threats targetting cryptocurrency, based on CipherTrace report.
5 Internal taxonomy for Canadian Centre for Cyber Security (CCCS) 16 Open Threat Taxonomy
6 Europol common taxonomy for law enforcement and csirts 17 Penetration test (pentest) classification
7 Vocabulary for Event Recording and Incident Sharing (VERIS) 18 Infoleak taxonomy
8 ENISA threat taxonomy in the scope of securing smart airports 19 Common Taxonomy for Law enforcement and CSIRTs
9 SANS malware classification based on "Malware 101 – Viruses" 20 MONARC Threats Taxonomy
10 CERT-XLM Security Incident Classification 21 Distributed Denial of Service - or short: DDoS - taxonomy
11 GSMA - Fraud and Security Group 22 Incident disposition based on NASA Incident Response

and Management Handbook

since most taxonomies have two tiers of classification, such as the eCSIRT.net incident taxonomy, we
opted to follow this level of detail. This allows us to choose the granularity level of the classification.
To define UT we analyzed the 22 public taxonomies listed in Table 4, for the tags related to incident
classification4. UT is composed of 8 incident categories of Tier 1 (such as the other two taxonomies)
and 38 sub-categories of Tier 2 distributed by Tier 1 categories.
Table 5 resumes how each public taxonomy of Table 4 contributed to the definition of UT, in

terms of number of incident classification tags for each Tier 2 sub-category (column 3), and so, how
many taxonomies are in root of each Tier 1 and Tier 2 (column 26). In total, 354 tags from public
taxonomies were mapped to our taxonomy, being Veris, CARO and Europol the taxonomies that
most contributed (line 41). Also, eCSIRT.net, Veris, CERT-XLM, and CARO were the taxonomies that
most participated in the definition of Tier 2 sub-categories (last line).
Table 6 contains an excerpt of UT, showing the relationship map we created for all public

taxonomies (columns 1 to 3). The complete definition of UT can be found in Appendix B [24].
Additionally, a bag of words was defined for each Tier 2 of UT to describe them and allow further

classification. Each bag was created based on words extracted from the public taxonomies and
synonyms from these words. These bags of words will not only support further analyses over
events with public taxonomy tags but, most importantly, be used to analyse events without public
taxonomy tags, e.g., those two untagged events from our dataset that were not classified yet. The
last column of Table 5 contains the number of words affected to each category, in a total of 147
words, and the last column of Table 6 presents the bag of words mapped by category of UT. The
complete list of bags of words can be found in Appendix B as part of the definition of the UT [24].

3.3 Main Threat Attributes
As previously stated, the volume of shared information is one of the TIPs’ limitations (see Section
2.6). This limitation was observed during the analysis of our dataset in the following formats:

4https://www.misp-project.org/taxonomies.html
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Table 5. Contribution of each public taxonomy of Table 4 in the definition of the unified taxonomy.

Unified Taxonomy Public Taxonomies
Tier 1 Tier 2 #Tg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 #Tx #W
Abusive content spam 13 1 1 1 1 3 2 1 1 1 1 10 13
Malicious Code adware 4 1 1 1 1 4 1

backdoor 4 2 1 1 3 1
browser-modifier 3 2 1 2 2
cryptominer 3 1 1 1 3 6
dialer 4 1 2 1 3 1
dos 14 4 1 9 3 5
exploit 6 1 2 1 2 4 1
hack-tool 1 1 1 2
misleading 8 1 1 6 3 6
monitoring-tool 7 2 2 3 3 8
password-stealer 6 1 1 4 3 6
ransomware 12 1 1 1 2 1 1 1 1 2 1 10 2
remote-access-tool 7 1 2 2 1 1 5 1
settings-modifier 3 1 2 2 4
spammer 4 1 1 2 3 2
spoofer 2 2 1 2
spyware 8 1 2 2 1 1 1 6 2
trojan 15 1 10 1 2 1 5 7
virtool 8 1 1 2 1 1 1 1 7 3
virus 7 1 1 2 1 1 1 6 2
wiper 5 1 2 2 3 6
worm 9 1 1 2 1 1 1 1 1 8 2

Information- scanning 11 1 1 1 2 1 1 3 1 8 3
Gathering sniffing 6 1 3 1 1 4 2

social-engineering 17 1 1 6 4 1 1 2 1 8 12
Intrusion- ids-alert 12 1 8 1 1 1 5 5
Attempts brute-force 9 1 4 1 1 1 1 6 3

unknown-exploit 3 1 1 1 3 3
account-compromise 6 2 2 2 3 6
system-or-application-compromise 60 4 4 1 1 7 34 2 2 1 2 2 11 6
botnet-member 2 1 1 2 2

Availability dos-or-ddos 24 1 3 4 4 1 1 2 1 2 5 10 6
information- unauthorised-information-access 9 1 2 2 1 1 1 1 7 3
content-security unauthorised-information-modification 9 1 1 3 1 1 1 1 7 3
Fraud masquerade 6 1 1 1 1 1 1 6 2

phishing 23 1 1 3 2 4 1 1 1 4 2 1 1 1 13 4
Vulnerable vulnerable-service 4 1 1 1 1 4 2
Contribution of each public taxonomy in #Tags 354 12 31 23 53 18 35 66 5 9 23 3 12 27 13 1 1 8 2 3 3 5 1
#Tier 2 categories in which public taxonomies contributed 9 25 16 20 16 10 21 2 8 21 3 7 10 11 1 1 5 1 3 3 1 1

• Events containing collections of IoCs from multiple attacks. Most of these events contain IoCs
with few or no correlations. For example, some of these events contain lists of malicious IPs
with the primary purpose to serve as an input for a detection or prevention component. Since
these events contain long lists of attributes with few to no context between each other, we
opted to discard them from further analyses, not negatively impacting our results. In total,
17 events were discarded from the 1168 events.
• Events with too many attributes. 20% of our dataset contained events with more than 100
attributes. From the point of view of a security analyst, the more attributes an event has, the
more difficult it is to analyze.

To discover the most prevalent attributes that underlie an incident category, i.e., the main threat
attributes, the following analyses focused on the events with less than 100 attributes and those
with too many attributes. For the latter, we intend to understand why they have so many attributes
and capture which important information might be extracted from them. Thus, the following three
analyses were made considering both number of attributes. These analyses combined the results
by the number of attributes, aiming to differentiate the results from smaller and bigger events
and consequently determine the main attributes. For this purpose, four attribute intervals were

, Vol. 1, No. 1, Article . Publication date: July 2022.



14 Martins and Medeiros

Table 6. Unified taxonomy (excerpt of) with public taxonomy and bag of words mappings.

Unified Taxonomy Public Taxonomies Bag of wordsTier 1 Tier 2
Abusive content spam cccs:email-type="spam" spam, junk email, junk mail, junk e-mail,

circl:incident-classification="spam" unsolicited email, unsolicited mail,
ecsirt:abusive-content="spam" unsolicited e-mail, bulk email, bulk mail,
enisa:nefarious-activity-abuse="spam" bulk e-mail, unwanted email,
europol-event:email-flooding unwanted mail, unwanted e-mail
europol-event:spam
europol-incident:abusive-content="spam"
gsma-fraud:technical="spamming"
information-security-indicators:iex="spm.1"
maec-malware-capabilities:maec-malware-capability=
"email-spam"
rsit:abusive-content="spam"
veris:action:malware:variety="spam"
veris:action:social:variety="spam"

malware adware cccs:malware-category="adware" adware
malware_classification:malware-category="adware"
ms-caro-malware:malware-type="adware"
veris:action:malware:variety="adware"

backdoor maec-malware-behavior:maec-malware-behavior= backdoor
"install-backdoor"
ms-caro-malware:malware-type="backdoor"
ms-caro-malware-full:malware-type="backdoor"
veris:action:malware:variety="backdoor"

browser- cccs:malware-category="browser-hijacker" browser hijacker, browser modifier
modifier ms-caro-malware:malware-type="broswermodifier"

ms-caro-malware-full:malware-type="broswermodifier"

considered: I1 - less or equal than 100, I2 - between 100 and 500, I3 - between 500 and 1000, and I4
- greater than 1000.

3.3.1 Distribution of Events by Attributes. This first analysis was based on the distribution of
events by the four intervals of attributes. However, since we aim to get the attributes that better
characterise an incident category, it was needed to determine which events are classified as an
incident and which are not, distributing them along with the intervals. We resorted to the public
taxonomies’ tags to classify each event according to UT. More precisely, each tag from each event
was compared with the public tags and, when matched, classified according to the corresponding
Tier1 category of UT. The 691 tagged events in an incident category were correctly classified
in UT, whereas the remaining 460 (out of 1151) were not classified because they did not have
any classification tags related to incidents, so they did not match with any taxonomy. 666 of the
classified events fit the first two (I1 and I2) intervals, respectively, with 550 and 116 events. It is
important to note that some events were classified with more than one Tier1 category because they
had more than one public tag corresponding to different UT categories.

3.3.2 Identification of Similar Attribute Types. Due to the high amount of MISP supported attribute
types, a second analysis was made to identify attributes with similar types (i.e., properties) and
aggregate them. For example, both MD5 and SHA1 attributes are hash values that are used as a
checksum to verify data integrity, so they will be aggregated into the same group named file hash.
By aggregating similar types of attributes, the results of the subsequent analysis will be focused on
the characteristics of the attributes and not only on their type, meaning that, even if our dataset
only have attributes with the type MD5, attributes with the type SHA1 will not be discarded from
the results, since they belong to the same group.

3.3.3 Identification of Threat Main Attributes. This analysis had the objective of identifying the
most predominant attribute groups for each Tier 1 category, based on the previous two analyses.
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The four intervals of the number of attributes were considered but cumulative. This means that
the first cumulative interval (CI1) is equal to I1, the second cumulative interval (CI2) contains all
events with a number of attributes until 500, i.e., I1 and I2, and so on. Table 7 shows the results
of this analysis, i.e., the most predominant attribute groups for each Tier 1 category of UT. The
complete tables can be found in Appendix C [24].

As expected, the events with more attributes have a higher impact on the statistical results due
to the weight of an event being directly proportional to the amount of the attributes in itself. This
observation can be confirmed from the results presented in the table. As a result, when the analysis
was performed over all the classified events (CI4 interval of attributes), some of the results had
significant discrepancies compared to the analysis results restricted to events with less than 100
attributes. For example, for information-gathering Tier 1 category, the attribute group network name
equals 12% of all groups when the analysis is only made over events with less than 100 attributes,
and the same attribute group equals 61% of all groups when including all the classified events
in the analysis (CI4). Since our dataset comprises events with less than 100 attributes, we have
higher trust in the results gathered from those. Thus, we opted to use the result from the CI1 (or
I1) interval. In a more detailed analysis on this interval for all Tier 1 categories, we noticed that
four attribute groups are present in every category, namely, Network address, File hash, Other Info,
and File name. Also, the attributes URL and Network name are present in all categories, except in
Vulnerable and information-content-security categories. This information will be used to improve
the global quality of the events by only using the most important attributes of each category.

Table 7. The most predominant attribute groups for Tier 1 categories of the unified taxonomy.

Attribute Group CI1 CI2 CI3 CI4 Attribute Group CI1 CI2 CI3 CI4
Abusive-content Malicious-code

URL 30% 25% 22% 17% File hash 24% 29% 33% 32%
Network address 28% 26% 29% 25% URL 17% 15% 13% 10%
Network name 27% 23% 20% 16% Network address 17% 16% 15% 13%
File hash 8% 14% 15% 23% Network name 16% 15% 13% 21%
Other Info 3% 6% 6% 8% Other Info 15% 16% 16% 15%
File sample 2% 6% 6% 11% File name 3% 3% 3% 2%
File name 2% 1% 1% 0% Date 2% 2% 2% 2%
Email text 1% 0% 0% 0% File sample 1% 2% 2% 4%

Information-gathering Intrusion-or-intrusion-attempts
Network address 35% 25% 25% 13% Other Info 31% 23% 10% 10%
File hash 22% 23% 23% 11% File hash 30% 31% 13% 13%
Other Info 12% 10% 10% 5% Network name 22% 7% 6% 6%
URL 12% 12% 12% 6% Date 7% 7% 3% 3%
Network name 12% 23% 23% 61% File name 4% 3% 1% 1%
File name 2% 3% 3% 2% Network address 3% 27% 54% 54%
Vulnerability 1% 0% 0% 0% URL 3% 2% 11% 11%
Email text 1% 0% 0% 0% Email address 1% 0% 0% 0%

Availability Information-content-security
Network name 33% 33% 33% 33% Other Info 52% 52% 52% 52%
Network address 25% 25% 25% 25% File name 29% 29% 29% 29%
Other Info 23% 23% 23% 23% File hash 11% 11% 11% 11%
File hash 14% 14% 14% 14% Date 3% 3% 3% 3%
Rule 2% 2% 2% 2% File sample 1% 1% 1% 1%
Date 1% 1% 1% 1% Network address 1% 1% 1% 1%
File name 1% 1% 1% 1% Regkey 1% 1% 1% 1%
URL 1% 1% 1% 1% URL 1% 1% 1% 1%

Fraud Vulnerable
Network name 50% 49% 58% 81% File hash 53% 53% 53% 53%
File hash 14% 23% 13% 6% Other Info 18% 18% 18% 18%
URL 11% 4% 5% 2% File name 13% 13% 13% 13%
Other Info 11% 9% 11% 5% Network name 11% 11% 11% 11%
Email address 5% 1% 3% 1% Rule 3% 3% 3% 3%
Network address 4% 5% 3% 2% Network address 2% 2% 2% 2%
Rule 2% 1% 0% 0% Process other info 1% 1% 1% 1%
File name 1% 3% 2% 1% Agent 0% 0% 0% 0%

, Vol. 1, No. 1, Article . Publication date: July 2022.



16 Martins and Medeiros

3.4 OSINT References to External Platforms
Another key finding from our dataset was many references to external platforms in the form of
links, namely 5325 links from 228 domains. More than 90% of the links pointed to VirusTotal5, an
online service that analyses files and URLs enabling the detection of viruses, worms, trojans and
other kinds of malicious content using antivirus engines and website scanners. Additionally, these
platforms like VirusTotal tend to provide APIs to access information without using the website
interface. However, the amount of these references increases the time that an analyst requires to
analyse the event since the analyst needs to jump between platforms to gather information and
process it manually. We consider this as a TIP’s limitation (not pinpointed on Section 2.6, neither
by [13][14][44]) which can easily be turned into a benefit and it is considered in our proposed
solution.

4 AUTOMATED EVENT CLASSIFICATION AND CORRELATION PLATFORM
This section presents the overall design of our proposed solution, called Automated Event Classifi-
cation and Correlation Platform (AECCP), which aims to improve the quality threat intelligence
produced by TIPs by classifying and enriching it automatically. In practice, the solution is composed
of four core modules, each one focused on one or more limitations verified in our data analysis de-
tailed in Section 3 and some of those presented in Section 2.6, and a fifth module that interconnects
the other four and manages all AECCP’s operations.

Table 8. Addressed limitations and correspondent proposed solutions.

ID Limitation Solution Module Section
LT10 Diverse data formats Every event will be normalized to a standard format Classifier 4.3
LT7 Threat knowledge management limitations Every event will be classified according to the unified

taxonomy defined in Section 3.2
LT2 Limited technology enablement in threat triage The classification of each event will be automated,
LT5 Limited advanced analytics capabilities and based on its data

tasks automation (description of the attack, anti-virus reports, etc.)
LT1 Shared threat information is too voluminous Each event will have a simplified view only containing Trimmer 4.4

the most predominant attributes stated in Section 3.3
LT3 Data Quality Events containing links to VirusTotal will be enriched Enricher 4.5

with information provided by the platform.
LT8 Focus on tactical IoCs Additionally, events containing hashes and URLs will
LT9 Trust related issues also be enriched using the same method.
LT4 Limited analytics capabilities When at least 2 events from the same category have Clusterer 4.6
LT6 Focus on data collection an attribute in common, a cluster will be created in
LT11 Shared intelligence without expiration date order to help an analyst identify related events and to

be included in network defence mechanisms

Regarding the limitation related to the volume of shared information, we propose an approach to
reduce the number of attributes per event based on the most predominant attributes of its category,
which were determined in Section 3.3. Moreover, for incident taxonomy management, we propose
to classify every event according to the unified taxonomy defined in Section 3.2. Since AECCP will
analyse and classify events in an automated way, it also increases technology enablement in threat
triage. Furthermore, we propose a solution to enrich the data quality of an event based on OSINT
from the VirusTotal platform. To increase the advanced analytics capabilities of MISP, we propose
to create new events as clusters of enriched events from the same threat and with related attributes
in common, after a correlation process that looks for relationships between attributes of different
events. Table 8 depicts the limitations that we addressed in AECCP as well as the proposed solution
for each one, the AECCP’s module that comprises the solution, and the section it is presented.
However, for a better understanding of the solutions, first, we present the symbolic representation
5https://www.virustotal.com/
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of an event that is used along the sections and in Section 4.2 we give an overview of the platform,
showing the workflow and interactions between the four modules.

4.1 Symbolic Representation of an Event
A TIP’s event can be represented by the tuple Ex =< d,ot,T ,A,R >, identified by x and where d is
its description, T = {NULL|T1...Tn} the public taxonomy tags that classify it into malicious threat
categories and custom tags created by security analysts, for example, to identify the event within
the organization; A = {A1...Am} the attributes, ranging from 1 to m, that characterize the event;
R = {NULL|(Ai ,Aj )...(Au ,Av )} the relations between attributes. For example, (A1,A2) represents
the relation between A1 and A2 attributes. If the event is not yet classified and there is no relations
between their attributes, NULL is used to indicate such. Finally, all the other data of an event with
minor relevance for this work will be compacted into the field ot .

AECCP follows this event representation, but the elements of AECCP’s events are sets associated
with UT, main and enriched attributes and their relations. We denote uEx =< d,u T ,u A,u R > as
being the resulting AECCP’s event when the platform processes Ex , and we use the following
nomenclature: uT = {uT1...uTm} is the UT tags that classify the event; uA = {дA,e A} is the set
of attributes that characterize the event, which can be main threat attributes (дA = {дA1...

дAj })
and enriched attributes (eA = {eA1...

eAv }). A eAj attribute is the resulting of an enrichment of
a дAj attribute, i.e., a дAj attribute is enriched with external information from VirusTotal and
with antivirus information associated with the result of VirusTotal (resulting in eAj ). uR = R(uA)
the relations between attributes from uA. Also, we denote by uCy the cluster resulting from the
correlation and aggregation tasks performed by AECCP over uE events.

4.2 AECCP Overview
AECCP is a platform that interacts with TIPs (e.g., MISP) to generate new events with their quality
threat intelligence increased. In other words, it classifies, enriches and correlates the events received
by TIPs, and does all the work in an automated manner. The platform is composed of five modules
– Classifier, Trimmer, Enricher, Clusterer, and Orchestrator – which the first four perform together
all the work and the last coordinates the workflow between the other four. Figure 1 depicts the
overview of its architecture and the workflow between the four modules.
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Fig. 1. Overview of the AECCP.

(1) An event Ea , from the TIP database (e.g., MISP), serves as input to the Classifier module,
without suffering any pre-processing from TIP. The module aims at classifying each event
according to UT. In order to get the most accurate classification, Ea is firstly normalized to a
standard format and then is only classified according to the Tier 1 category of UT. Afterwards,
the event is updated with Tier 1 tags (uT tag set), transforming it into Ea′ .

(2) The Trimmer module aims at reducing the volume of attributes in an event based on the
relevancy of those attributes. The module receives Ea′ , iterates over its attributes, and creates
uEa , an AECCP event with the most relevant attributes uAi and the uT tag set from Ea′ .
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(3) The new event (uEa ) is then sent to the Enricher module to enrich it with information from
VirusTotal. In this module, uA attributes in the event containing URLs or hashes are updated
with information from the VirusTotal. Additionally, the module adds an associated enriched
attribute to the event for each uAi attribute that was updated (enriched). This new attribute
will support the output of antivirus engines, website scanners and analysis tools (that allowed
the update). At the final, uEa is updated with both attributes and its relationship (R(uA)).

(4) uEa is now reprocessed by the Classifier module, but this time according to the Tier 2 category
of UT. Since the event was enriched (by the Enricher) with information not existent at the
beginning of the processing, the Classifier can classify the event more accurately. In this step
the Tier 1 uTx tags are updated with Tier 2 uTx .y tags (e.g., [uni f ied :u T1 =

u T1.2]).
(5) The Clusterer module aims at creating clusters of events that share the same threat category

and have at least an uAi attribute in common. Other events that share at least one Tier 2
uTx .y with uEa and have at least one valuable attribute uAi (attributes that provide context
to a specific attack) in common with uEa are clustered in a new cluster event uCi . Moreover,
this module is recursive, meaning that it tries to find other events related to every event
added to the cluster. Additionally, multiple new uCi can be created by Clusterer if uEa has
more than one distinct Tier 2 category tag.

Both results provided by the second pass of the Classifier and the Clusterer can be integrated
into defence mechanisms (e.g., firewalls, IDS, IPS, and SIEMs) installed in the organization?s IT
infrastructure to protect the organization from cyber-attacks.
Figure 2 presents the detailed workflow within and between the four modules. The following

four sections are dedicated to each module to describe its operation in detail.
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Fig. 2. The detailed workflow within and between the modules of the AECCP.
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4.3 Automated Event Classification
As explained in Section 3.2, the high diversity of classification tags can be a disadvantage from the
point of view of threat knowledge management (LT7). Furthermore, the diversity of data formats
that OSINT can take (LT10) can have a negative impact on this management, making OSINT
processing difficult. Additionally, due to this diversity, most events must be manually analysed
to identify their categories and classify them as such. Since most threat triage and periodisation
processes rely on the event category (LT2), this manual process creates an unwanted delay in the
subsequent processes (LT3). To reduce these limitations, AECCP comprises the Classifier module
that automatically classifies events according to the UT after they have their data format normalised
and based on the tag, description and attributes information of the TIP’s events. To do so, the
Classifier resorts to two methods – classification based on public taxonomies tags and classification
based on keywords.
Regarding the first method, the Classifier takes advantage of the mapping information from

Table 6 to find every public taxonomy tag Ti to map to a UT tag uTi . In other words, each TIP’s
event will have its tags scanned and matched against the UT mapping table. When matched, the
corresponding UT tag uTi is added to the uT list, if not already in the list. In the end, the T tag list
of the event is updated with the uT list it found. For example, if an event has two public tags related
to the same threat category, e.g., the tags [cert-xlm:information-gathering="scanner"] and
[circl:incident-classification="scan"], the UT tag
[unified:information-gathering="scanning"] will be added to the uT tag list once, and then
this list will be added to the T list. Note that the uT tags follows the same scheme of tags from
public taxonomies, i.e., [taxonomy:Tier1 tag="Tier2 value"]. We identified UT by unified.
For the second method, the Classifier uses the bag of words from the last column of Table 6 to

identify keywords related to a UT category based on the information contained in the description,
attributes and custom tags (tags that do not belong to a public taxonomy) of the TIP’s events. As
we previously mentioned, some events hold important details in their descriptions that can help
an analyst identify the category of the incident. Moreover, it is also possible to gather important
information from attributes and custom tags of an event to better classify it. Therefore, events will
also have their custom tags, description and attributes scanned and matched against the bag of
words. When matched, the related UT tag uTi is added to the uT tags list, if not already in the list.
Later, this list will be added to the T list. Unlike the first method, this method can classify events
that were not tagged yet (i.e., without classification tags; T = NULL). As an example, if the word
phishinд is found in the description of an event with no public taxonomy tags, the event will be
updated to contain the uTi tag [unified:fraud="phishing"] in its uT list.

Each event is processed two times by the classifier module, in steps 1 and 4 of Figure 2, each time
according to a different UT Tier. In step 1, the module classifies Ea according to Tier 1 and updates it
with the Tier 1 uT tags it founds, resulting in thus Ea′ . This step uses the two classification methods
described above. On the other hand, in step 4, the Classifier updates the uT tags determined in
step 1, but now according to Tier 2. It uses the classification based on keywords method, but now it
resorts to information driven by the processing of the Trimmer and Enricher modules (see next two
sections), which add information that did not belong to the initial event (Ea ), respectively, the main
attributes (дA) and the enriched attributes (eA). Therefore, this information is matched against the
bag of words for each Tier 1 category already found, obtaining the Tier 2 associated with Tier 1. In
addition, new uTi Tier 1 can be found during the analysis if those attributes contain information
that allows such. Afterwards, the Tier 1 tags from the uT list are updated with Tier 2 tags, in the
form [unified:uTi Tier1 = uTi .j Tier2] (e.g., [unified:fraud="phishing"]).
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As final remarks, if Ea could not be classified according to Tier 1 category (in step 1) due to lack
of information, the event proceeds without uT tags since the subsequent modules will enrich it; so
it will receive other information. Step 4 will reprocess and classify it according to Tier 1 and Tier 2
categories. If it still could not be classified, the event exits the pipeline and is not processed by the
further modules.

Algorithm 1 represents the main logic behind the Classifier, where the processing of each event
is separated in Tier 1 classification (step 1, lines 1–3) and Tier 2 classification (step 4, lines 5–9)
based on the state of the event that was passed into the Classifier. For each tier classification is
called the function classifyTier1 and classifyTier2. The classifyTier1 function (presented in Algorithm
2) uses the Public Taxonomy Mapping (lines 5–8) and the Bag of Words (lines 9–16) for discovering
the uTi Tier 1 tags. Algorithm 3 shows the logic behind the classifyTier2 function, which also uses
the same repositories for processing the information of step 4.
Algorithm 1:Main logic overview of the Classifier module.
input :Ea for step 1 or uEa for step 4;

state indicating if Classifier is being called on step 1 or step 4
output :Ea′ for step 1 or uEa updated for step 4

1 if state == 1 then
2 uT ← classifyTier1(Ea);
3 Ea′ ← concat(Ea , uT );

4 else
5 if uT == NULL then
6 uT ← classifyTier1(uEa);
7 uEa ← update(uEa , uT );

8 uT ← classifyTier2(uEa);
9 uEa ← update(uEa , uT );

Algorithm 2: Unified taxonomy Tier 1 classification.
input :Ea for step 1 or uEa for step 4;

Public Taxonomies Mapping PubTaxMap;
Bag of Words BagOfWords

output :NULL or the uT list containing uTi Tier 1 UT tags
1 d ← [d from Ea | d from uEa ];
2 T ← [T from Ea | NULL];
3 A← [A from Ea | [дA, eA] from uEa ];
4 uT ← NULL;
5 foreach Tier 1 UT uTi in PubTaxMap do
6 foreach public taxonomy PubTaxx related to uTi do
7 if PubTaxx belongs to T && uTi does not belong to uT then
8 add(uTi , uT );

9 foreach Tier 1 UT uTi in BagOfWords do
10 foreach word w related to uTi do
11 if d contains w && uTi does not belong to uT then
12 add(uTi , uT );

13 else
14 foreach attribute att in A do
15 if att contains w && uTi does not belong to uT then
16 add(uTi , uT );

17 return uT

4.4 Event Simplification
The amount of shared information derived from events with too many attributes (LT1) was another
limitation verified in Section 3.3. Both manual and automated analyses of events are impacted by
unnecessary information. This type of information mainly acts as good to know, in opposite to

, Vol. 1, No. 1, Article . Publication date: July 2022.



GeneratingQuality Threat Intelligence Leveraging OSINT and a Cyber Threat Unified Taxonomy 21

need to know, creating noise and consequently adding complexity to the event. To minimize this
limitation, we propose the Trimmer module. The Trimmer automatically trims the less relevant
attributes from events, based on their UT Tier 1 tags and according to the predominant attributes
(i.e., good to know information) resulting from the analysis presented in Section 3.3.
Algorithm 3: Unified taxonomy Tier 2 classification.
input :Event uEa on step 4;

Event Ea′ on step 4;
Public Taxonomies Mapping PubTaxMap;
Bag of Words BagOfWords

output :NULL or the uT list containing uTi j Tier1:Tier2 tags

1 T ← T from Ea′ ;
2 d ← d from uEa ;
3 A← [дA, eA] from uEa ;
4 foreach Tier 1 UT uTi in uT do
5 foreach Tier 2 UT uTj related to uTi in PubTaxMap do
6 foreach public taxonomy PubTaxx related to uTj do
7 if PubTaxx belongs to T && Tier1:Tier2 UT uTi j does not belong to uT then
8 add(uTi j , uT );

9 foreach Tier 2 UT uTj related to uTi in BagOfWords do
10 foreach word w related to uTj do
11 if d contains w && Tier1:Tier2 UT uTi j does not belong to uT then
12 add(uTi j , uT );

13 else
14 foreach attribute att in A do
15 if att contains w && Tier1:Tier2 UT uTi j does not belong to uT then
16 add(uTi j , uT );

17 foreach Tier 1 UT uTi in uT do
18 remove uTi
19 return uT

Each event served as an input to the module will have its attributes scanned and mapped
according to the attribute groups. Afterwards, based on a global relevancy threshold defined by the
security analyst for each attribute group (e.g., 10%) and the Tier 1 tags, if the attribute in analysis
belongs to a group with greater relevance than the threshold and based on results of Table 7, the
attribute will be marked as being a main threat attribute. For cases where the event has no Tier 1
uT , it is processed the same way as if it had all Tier 1 of uT tags, thus not losing any predominant
attributes. Finally, if both attributes of an event’s relation were considered main threat attributes,
the relation is added to the final event (i.e., to uEa ). This verification and addition are made for
every relation the event contains.
Summarily, the module receives Ea′ as input, identifies its main attributes and the relations

between them, and then creates the uEa event with the description of Ea′ , the uT tags, the list дA
of main attributes, and their relations (R(дA)). Algorithm 4 shows the logic behind this module,
which follows the process described throughout this section.

4.5 OSINT-based Event Enrichment
As explained in Section 3.4, more than 90% of the links contained in events pointed to VirusTotal
online platform. The references to external platforms increase the time an analyst requires to analyse
an event since he needs to jump manually between platforms to gather information. Moreover,
enriching events with additional information gathered from external sources can significantly
improve other processes and tasks (LT3, LT8) if this information is related to a predominant attribute
group (a main threat attribute) (LT9).
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AECCP integrates an event Enricher module that takes advantage of the references to external
platforms to enrich the quality threat intelligence of events. Hence, the module automatically
enriches events containing main threat attributes with links to VirusTotal, URLs or file hashes.
Algorithm 4: Algorithm of the Trimmer module.
input :Event Ea′ on step 2;

Main Attributes MainAtts;
Treshold tresh

output :Event uEa
1 d ← d from Ea′ ;
2 uT ← uT from Ea′ ;
3 A← A from Ea′ ;
4 R ← R from Ea′ ;
5 дA← NULL;
6 R(дA) ← NULL;
7 uEa ← new AECCP event;
8 add (d , uEa );
9 add (uT , uEa );

10 if uT == NULL then
11 foreach Tier 1 UT uTi in PubTaxMap do
12 foreach attribute group attG in MainAtts do
13 if attG % > tresh && attG does not belong to дA then
14 add(attG, дA);

15 else
16 foreach Tier 1 UT uTi in uT do
17 foreach attribute group attG in MainAtts related to uTi do
18 if attG % > tresh && attG does not belong to дA then
19 add(attG, дA);

20 foreach attribute att in A do
21 foreach attribute group attG in дA do
22 if type(att) is related to attG then
23 add(att, дA);

24 add(дA, uEa);
25 foreach attribute relation attR in R do
26 if both attributes from attR are in дA then
27 add(attR, R(дA));

28 add(R(дA), uEa);
29 return uEa

Algorithm 5 illustrates the data flow made by this module, which follows the process presented
next. Each uEa event processed by Enricher will have its дA main attributes scanned. If any of
these attributes have any URL or file hash, it is parsed to extract them. In addition, since VirusTotal
links contain IoCs in the target URL, they are also extracted by the same procedure. For each
extracted IoC (URL or file hash), a request is sent to VirusTotal, and a report is received containing
the most known antivirus engines, website scanners and analysis tools regarding that IoC. This
information will update those дAi attributes with URLs and file hashes, transforming them into
enriched attributes, eAi . Additionally, complementary information can be received like hashes
according to different hashing algorithms. Such information is also stored in eAi attributes, and a
relationship between them is created (denoted by R(eAi )).

4.6 Event Clustering
Creating correlations between events is one key feature that helps SOC analysts identify threats
with similarities, such as source, target, payload, threat actor, and used tools. However, as mentioned
previously, most TIPs have limited advanced analytics capabilities (LT4) related to event correlation.
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MISP has its built-in correlation algorithm that allows an analyst to identify events that have
attributes in common. However, this algorithm relies on the values of the attributes and one key
information, a flag, that specifies if that attribute can be correlated. This flag is inserted manually
and, if not appropriately used, negatively impacts the correlation of events. For example, if a user
adds an attribute to an event that indicates that the payload was sent over HTTP, the correlation of
this attribute with attributes from other events will mostly be useless since many attacks use HTTP
to send the payload. Therefore, we must know which attributes should be flagged as correlation
information and why some attributes should not be flagged as such. Thus, it is crucial to managing
event correlation properly. Moreover, this built-in algorithm does not use the information related
to the event category, creating a relation between events without context.
Algorithm 5: Algorithm of the Enricher module.
input :Event uEa on step 3;

External platform VirusTotal VT
output :Event uEa with some of yours дA attributes enriched, the eA attributes

1 f ileH ← File hash attribute group;
2 R(eA) ← NULL;
3 foreach attribute group attG in дA do
4 if type(attG) in F ileH || type(attG) isURL || type(attG) is l ink then
5 r es_vt ← get(attG, VT );
6 attE← update(attG, r es_vt);
7 av ← new attribute;
8 update(av , antivirus summary information);
9 r el ← relation(attE,av);

10 add(r el , R(eA));

11 return uEa

The AECCP aims to improve the analytic capabilities (LT4) of TIPs, namely the event correlation
capabilities, turning TIPs more than a data collector and repository (LT6). For that, it contains the
Clusterer module for automatically creating clusters of events that share the same incident category
and have at least one valuable main attribute in common (attributes that provide context to a
specific attack, such as hashes). The resulting clusters are AECCP events that combine information
about the same attack and which can be shared timely with external entities and used in defence
mechanisms (LT11).
Hence, each event received by the Clusterer will have its main attributes scanned, looking for

connections points with other events. For each scanned attribute, if its content does not add value
when correlated, it will be skipped. Attributes’ contents such as booleans, dates, and small sets of
possible values like HTTP methods fit in this case because multiple events with no relation have
them in common. A concrete example of this case is an HTTP flood attack, which is categorized on
UT as [unified:availability="dos-or-ddos"], and an intrusion using an unknown exploit as
[unified:intrusion-or-attempts="unknown-exploit"]. Both events could be exploited using
the HTTP GET method, but they do not correlate between them, meaning that they may even share
some attribute’s content (HTTP GET), but it does not imply that they are related. On the other
hand, if the scanned attribute adds values when correlated, a search is made over the database of
events to identify other events that contain the same attribute. If at least the event has a correlation
with another event and both share a uTi tag, a cluster is created. The resulting cluster contains
the uTi tag shared by events that compose the cluster, as well as all their attributes. Finally, all
events that compose the cluster are added as attributes and, for each, relations are created with the
attributes obtained from the correspondent source events.
In Figure 2 we can see the transformation of event uEa processed by the Clusterer. When

processed, attributes from дA and eA lists are scanned to identify valuable attribute (attributes
that provide context to a specific attack). Being дAx an valuable attribute, a search is made over
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uE events database to identify other events with дAx . Being uEb an event that contains дAx in
common with uEa , uT tags from uEa and uEb are scanned in order to find at least one UT tag
in common. Being uTi a common tag for both events, the uCab cluster is created with the tag
uTi . Furthermore, all the attributes from uEa and uEb are added to the cluster, where for those
valuable attributes in common, i.e., that formed the cluster, their contents are concatenated (e.g.,
дAx = [

uEa(
дAx )| |

uEb (
дAx )]). Additionally, uEa and uEb are also added as attributes to avoid losing

the original events that generated the cluster, and relations are created between them. In Section
5.2.4 a real example is provided to better understand the Clusterer output.
Algorithm 6 shows the data flow of the Clusterer explained above. In lines 3 – 9, the algorithm

searches upon events uE on the database to get other events with at least one attribute in common
with event uEa .
Algorithm 6: Algorithm of the Clusterer module.
input :Event uEa on step 5;

Database with uE events
output :Cluster uC with events that characterize a same threat

1 uC ← create cluster;
2 foreach UT tag uTi j in uT do
3 eventList = [];
4 foreach event uEi in uE do
5 if uTi j in uT (uEi ) then
6 foreach attribute att in [eA(uEa ), дA(uEa )] do
7 foreach attribute attx in [eA(uEi ), дA(uEi )] do
8 if att == attx && is not in [eA(uC ), дA(uC )] then
9 add(uEi , eventList);

10 foreach event uEi in eventList do
11 eventAtt ← new event attribute;
12 eventAtt ← uEi ;
13 foreach attribute att in [eA (uEi ), дA (uEi )] do
14 if att is not in [eA(uC ), дA(uC )] then
15 add(att, [eA(uC ), дA(uC )]);
16 r el ← relation(att,eventAtt);
17 add(r el , R(uC));

18 return uC

4.7 Orchestrator
This module is responsible for ensuring that each event, at any time, follows a specific flow, and it
is only processed by a module if the event has the required requirements (e.g., only can be enriched
if it was already trimmed). Additionally, this module is responsible for checking for new events
of TIPs, which were added via sharing or manually and initiating the AECCP processing for each
event. In sum, the Orchestrator is responsible for the following tasks:
• Fetch new TIP’s events. Periodically, it checks if there are new events from the selected OSINT
feeds and adds them to the TIP’s database.
• Initiate processing of new TIP’s events. Periodically, it checks for events that were added since
the last time AECCP processed an event.
• Assure the correct workflow order. It acts as a manager by sending each event to the correct
next module. This module takes advantage of custom tags that are only used by it, and these
tags store the current state of the event regarding the AECCP processing order.
• Resume the process. If the processing of an event is interrupted, the module can resume the
processing of that event without impacting the event database by falling back to the previous
event state.
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4.8 Implementation
We implemented the AECCP using Python 3.7 and over the MISP. For that, AECCP resorts PyMISP6,
a Python library to access the MISP platform via their REST API. Implementing AECCP leverages
built-in PyMISP functionalities to search, add or update events and attributes.
AECCP implements the five modules described in Section 4. Its modules can be considered

smaller solutions and, therefore, can work regardless of each other. Also, the platform has the
capability of exporting its events (i.e., uE events and uC clusters) to be used by external entities, for
example, SIEMs, CSIRTS, and SOCs.

5 EVALUATION
The objective of the experimental evaluation was to answer the following questions.

(1) Is AECCP able to classify events that are not initially tagged?
(2) Is AECCP able to reclassify events previously tagged with a known incident classification

taxonomy?
(3) Does AECCP simplify event triage?
(4) Is Trimmer able to reduce the number of attributes of events without losing valuable infor-

mation for their classification?
(5) Does Enricher improve the quality of the events?
(6) Is AECCP able to correlate different events (threats) that share the same IoC?
(7) Is AECCP more effective than PURE and ETIP platforms?
We validated and evaluated AECCP with three datasets of events. For validation we used as

ground truth the dataset we analyzed in Section 3 (Section 5.1), whereas for evaluation we used two
datasets that we did not have any knowledge about their events and being one of them constituted
by events generated by PURE [3] (Sections 5.2 and 5.3). Also, Section 5.3 presents an evaluation of
AECCP with PURE and ETIP platforms.

5.1 Validation with the Ground Truth Dataset
In order to validate the AECCP, we used as ground truth dataset the 1,168 events we analysed
in Section 3. The dataset comprises 2 totally untagged events and 1,166 tagged events, of which,
from the latter, 691 events are tagged into an incident category, but several of them have multiple
overlapping classification tags from different public taxonomies. The remaining 475 events are not
tagged into an incident category; hence, we consider them untagged. Summing up, the ground
truth contains 691 tagged events and 477 untagged events. The tagged events will serve to validate
the classification based on public taxonomies tags method, whereas the untagged events will validate
the classification based on keywords method, both methods from the Classifier module (see Section
4.3). However, note that we want to classify events for both UT tiers, meaning that the Classifier,
Trimmer and Enricher modules will be used and validated, and the Classifier will be executed twice.

Processing the 691 tagged events with AECCP, we verified that they were correctly classified
into incident categories of UT for both Tier 1 and Tier 2. The resulting classification was checked
based on the manual classification we made in the data analysis section (see Section 3). Table 9,
second column, shows these events classified through the eight Tier 1 categories of UT. Notice that
an event can fit into different Tier 1 categories.

For the 477 untagged events, when Classifier processed them the first time, the classification based
on keywords method was able to classify 453 of them into Tier 1 categories of UT, based on their
descriptions and attribute values. The other 24 remained untagged events, carried on to the Trimmer
and Enricher modules, and then re-evaluated by Classifier. We observed after this processing that
6https://pymisp.readthedocs.io/
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16 of them were enriched with external data, but the external data only allowed to tag 8 of them in
an incident category, i.e., with UT Tier 1 and Tier 2 tags. Curiously, the 2 totally untagged events
were between these 8 events. For all 461 classified events, we manually inspected their information
before and after they were processed by AECCP and verified that AECCP correctly tagged them.
For the 16 events that the platform failed to classify, we also inspected them to find out why. We
checked that they did not provide enough information in their descriptions and attributes to permit
them to be associated with an incident category. In addition, the attributes that Enricher enriched
did not bring valuable information that would allow their classification. The last column of Table 9
presents the 461 events classified into the eight Tier 1 categories.

Table 9. The ground truth dataset classified by AECCP over the Tier 1 incident categories of UT.

Tier1 Tagged events Unttagged events
Abusive content 145 99
Malicious Code 607 408
Information Gathering 63 55
Intrusion Attempts 37 43
Availability 5 10
information-content-security 2 12
Fraud 34 40
Vulnerable 3 5
Total 896 672

Most of the events were classified into the Malicious code (malware) and Abusive content Tier 1
incident categories of UT, reflecting well the number of cyberattacks that have been made over the
Internet. As a result, we can conclude that AECCP has a precision7 of 1 (i.e., 100%) when classifies
events previously labelled by public taxonomies. In contrast, AECCP, when processes untagged
events, its precision depends on the information that their descriptions, attributes and external data
can provide about the threats they report. Based on our ground truth, from the 477 untagged events,
the platform correctly classified 461 (TP) and did not have false positives (FP, events classified
wrongly into incident categories), meaning thus it had a precision of 1. However, since it was not
able to classify 16 out of the 477 events, we consider these events as being false negatives (FN), and
so it had a false negative rate of 0.033 and a recall8 of 0.966. Overall, based on the 1,168 events,
AECCP classified 1,152 (without false positives) and missed 16. Thus, it had a precision of 1, a recall
of 0.986, a false negative rate of 0.013, and a F1-Score9 of 0.992.

We measured the time that AECCP takes to process both types of events (tagged and untagged).
This time is strongly related to the quantity of data included in the events and that the platform has
to analyze, which depends on diverse factors, namely the number of the public taxonomy tags, the
number of attributes, and the amount of external data. As expected, the greater the amount of data,
the longer it takes to process it. Also, tagged events take longer than untagged events, considering
that both types of events have the same number of attributes and the same amount of external data.
It is explained by the fact that the former have their tags analyzed by the classification based on
public taxonomies tags method, while the latter does not. For the tagged events with less than 100
attributes, the average time for processing an event by AECCP is 30 seconds. Considering all 691
tagged events, it takes an average of 41 seconds to consume an event, with a standard deviation
(Std) of 17 seconds, which means that, at most, it takes approximately one minute to process an
event. Regarding untagged events, the processing times are shorter, namely: (i) 24 seconds on
average for events with less than 100 attributes; (ii) 31-seconds average for processing any event

7Precision = T P/(T P + F P )
8Recall = T P/(T P + FN )
9F1-Score = 2 ∗ (Precision ∗ Recall/(Precision + Recall ))
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out of the 477 events, with an 11-seconds std; (iii) a maximum of 42 seconds to process an event.
Therefore, the maximum time AECCP takes to process an event is one minute. Although it seems a
bit long, we consider it acceptable given that it is the cost of reducing to zero the time spent by
SOC analysts in analyzing and classifying events, which might incur classification errors.

5.2 Processing Dataset of MISP’s Events
This section assesses the ability of AECCP to process a dataset composed of 64 MISP’s events that
were not previously processed by the platform. The following sections present the characterization
of the dataset and its processing by AECCP’s modules.

5.2.1 Dataset characterization. The dataset’s events were provided from different providers –
CIRCL, CUDESO, inThreat, VK-Intel, ESET and MalwareMustDie – where 54 of the events were
from the first two sources. From the 64 events, approximately 77% (49 events) of them did not
contain any tags related to a known incident classification taxonomy, meaning that those events
were not yet classified. These events will serve to evaluate the AECCP ability to classify events with
the classification based on keywords method and to answer question 1. Regarding the volume of
attributes of the events and distributing them according to the same four intervals used in Section
3.3, the dataset is mainly composed of events with less than 100 attributes, 90% of the 64 events.

To get a detailed evaluation of our solution, we choose to perform a more in-depth analysis of the
(remaining) 15 events that, contrarily to the others, 49 events, were initially classified with a known
incident classification taxonomy. We choose these events since they can be used to evaluate almost
all use cases that AECCP deals with, except the AECCP ability to classify events that are not initially
classified, which can be evaluated by comparing the number of unclassified events initially and
after being processed by AECCP. Table 10 shows a more detailed view of the tags and the attributes
of these 15 events, namely, their public taxonomy tags (column 2), the total number of tags (TT,
column 3), including tags that did not add information about the type of the threat (e.g., Traffic
Light Protocol), the number of classification tags related to threat incidents (CT, column 4), and
the number of attributes (Att, column 5). As we can observe, all of the events have more tags than
those that really classify events with known incidents, having some of them a considerable number
of tags not associated with incidents, such as events 1, 11, 12. As we already stated, such tags do
not add value of threats, making the SOC analyst waste time analyzing irrelevant information.

5.2.2 Event classification. This section looks to evaluate AECCP ability to classify events into
UT for Tier 1 and Tier 2. So, the Classifier module will be evaluated for all its functionalities, but
also the Trimmer and Enricher modules since these two modules support the Classifier in the
classification of events. Also, this section aims to answer the first three questions.
After AECCP processed the dataset, 61 out of the 64 events were classified, increasing 72%

of the number of classified events. We recall that only 15 events were initially classified with
public taxonomy tags. Only 3 (out of the 64) events were not classified into UT due to the lack of
information in their descriptions and the absence of indicators that the Enricher could process (e.g.,
URL), thus adding more information to the events helpful the Classifier. The classification was
verified manually, meaning that AECCP correctly processed all events.

The 49 out of the 64 events without any tags related to a known incident classification taxonomy
were processed only using the classification based on keywords method. AECCP was able to classify
46 of them, meaning that the 3 events that were not classified belong to this data subset. Overall,
75% (46) of 61 classified events by AECCP were classified only based on keywords, meaning that
AECCP can classify events that are not initially classified, answering positively to question 1.

Regarding the analysis targeted to the 15 events initially classified with a known incident
classification taxonomy, the platform was able to use both classification methods and classify
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Table 10. Characterization of dataset of MISP’s events and results of processing of it by AECCP.

MISP’s events AECCP
Ex Public taxonomy tags TT CT Att Unified taxonomy tags TT CT AT AE
1 circl:incident-classification="spam" 12 1 17 malicious-code="virus" 4 4 13 13

malicious-code="worm"
malicious-code="spammer"
abusive-content="spam"

2 enisa:nefarious-activity-abuse="spear-phishing-attacks" 4 1 84 fraud="phishing" 1 1 78 92
3 malware_classification:malware-category="Botnet" 4 1 10 availability="dos-or-ddos" 6 6 10 10

malicious-code="exploit"
malicious-code="dos"
malicious-code="backdoor"
malicious-code="remote-access-tool"
malicious-code="cryptominer"

4 malware_classification:malware-category="Ransomware" 5 1 18 vulnerable="vulnerable-service" 3 3 18 42
malicious-code="exploit"
malicious-code="ransomware"

5 malware_classification:malware-category="Ransomware" 3 1 9 malicious-code="wiper" 2 2 8 8
malicious-code="ransomware"

6 circl:incident-classification="malware" 8 4 73 malicious-code="virtool" 4 4 43 53
malware_classification:malware-category="Downloader" malicious-code="cryptominer"
malware_classification:malware-category="Rootkit" malicious-code="trojan"
malware_classification:malware-category="Botnet" malicious-code="remote-access-tool"

7 malware_classification:malware-category="Ransomware" 5 1 7 malicious-code="ransomware" 1 1 7 7
8 circl:incident-classification="malware" 8 1 29 malicious-code="virus" 2 2 29 36

malicious-code="trojan"
9 circl:incident-classification="malware" 4 1 11 malicious-code="trojan" 1 1 11 11
10 enisa:nefarious-activity-abuse="spear-phishing-attacks" 8 1 115 fraud="phishing" 1 1 105 173
11 ecsirt:intrusions="backdoor" 38 4 17 malicious-code="virtool" 4 4 15 34

veris:action:malware:variety="Backdoor" malicious-code="trojan"
ms-caro-malware:malware-type="Backdoor" malicious-code="backdoor"
ms-caro-malware-full:malware-type="Backdoor" fraud="phishing"

12 ms-caro-malware:malware-type="Trojan" 10 5 10 malicious-code="trojan" 1 1 10 10
ms-caro-malware-full:malware-type="Trojan"
ecsirt:malicious-code="trojan"
CERT-XLM:malicious-code="trojan-malware"
malware_classification:malware-category="Trojan"

13 ecsirt:intrusions="backdoor" 10 4 34 malicious-code="virtool" 4 4 34 34
veris:action:malware:variety="Backdoor" malicious-code="backdoor"
ms-caro-malware:malware-type="Backdoor" malicious-code="virus"
ms-caro-malware-full:malware-type="Backdoor" malicious-code="cryptominer"

14 circl:incident-classification="malware" 12 2 86 malicious-code="trojan" 1 1 86 86
ecsirt:malicious-code="malware"

15 ecsirt:malicious-code="trojan" 7 1 27 malicious-code="trojan" 1 1 27 166

them correctly. Almost every event was classified with a new type of threat that was not initially
considered in the public taxonomy tags. For example, event E1 from Table 10 was identified only as
spam before being processed by AECCP, but after being processed by AECCP it was also classified
as malicious code with virus, worm and spammer, meaning that AECCP is able to reclassify events,
and so answering question 2. The sixth column of Table 10 shows the transformation of the tags of
the 15 events face to their original classification presented in the second column.

From the 15 events, on average, each had 5 more tags than before processed by AECCP, increasing
thus their tags from 2 to 7 (columns 4 and 8). As explained in Sections 3.2 and 4.3, AECCP classifies
events according to UT and, also, based on information contained in their description, meaning
that each event classification can be improved. These assumptions can increase the number of
tags per event. In addition, it is important to note that, after being processed by AECCP, all of the
tags on the events tag list are classification tags, contrary to before being processed by AECCP
where most of the tags were not classification tags, but added information about its source and
its sharing (e.g., TLP). Table 10, on columns 4 and 8, shows the number of tags regarding known
incident classification taxonomy, before and after being processed by AECCP.
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From the 15 events, 14 of them had their total number of tags significantly reduced (columns 3 and
7) due to two factors. The first is when an event has overlapping classification tags in its initial tag list
(e.g., [cccs:malware-category="ransomware"], [cert-xlm:malicious-code="ransomware"])
since they are transformed into a UT tag after being processed by AECCP. The second one is when
an event has non-classification tags in its initial tag list (e.g., TLP) since they are removed after being
processed by AECCP. From the point of view of a SOC analyst, the exclusion of non-classification
tags and the inclusion of new classification tags based on OSINT can simplify event triage since all
the tags in the event tag list add value to the analyses, answering thus to question 3.

5.2.3 Attribute trimming and enrichement. This section looks to evaluate AECCP ability to trim
and enrich events. More precisely, we evaluated the Trimmer and Enricher modules and sought to
answer the fourth and fifth questions.
Before being processed by AECCP, our dataset had approximately 90% of the events with less

than 100 attributes. After being processed by AECCP, the number of events with less than 100
attributes decreased to 85% of the initial number. This means, at first glance, that our solution
enriches more than it trims, adding more attributes than removing.

To understand this overall attribute increment, we analysed the number of attributes of the events
in three specific phases: before being processed by the Trimmer, exactly after being processed by
the Trimmer and, finally, after being processed by the Enricher. From the results of this analysis,
we can see that, on average, the Trimmer removes 12 attributes per event, and the Enricher adds 54
attributes per event, thus increasing 44 attributes per event. Enricher’s increase is because it can
add a maximum of 6 new attributes for each hash and 12 new attributes for each URL. For example,
if an event has attributes containing 3 hashes and 3 URLs, the Enricher will add 54 attributes to
the event. Summing up, on average, the number of attributes in the three phases is 49, 37, and 91.
Therefore, the attribute increment is due to the Enricher, which overlaps the Trimmer’s effect since
this last trims the event attributes effectively.
Similar to the Classifier evaluation, we also evaluated the Trimmer and Enricher impact on

the 15 events. Table 10 shows the number of attributes on the three phases, namely, before they
are processed by Trimmer and Enricher (Att, column 5), after Trimmer (AT, column 9) and after
Enricher (AE, last column). We verified that AECCP could reduce the number of attributes of some
events depending on the type of attributes of those events, so Trimmer, in these cases, reduced the
number of attributes effectively. This was observed in 6 out of the 15 events. On the other hand,
we also verified that those events that their attributes contain hashes and URLs, their number of
attributes was increased by Enricher. Summing up, 7 events were increased, where 4 were first
trimmed. Two of the remaining 8 events were trimmed but not enriched, and the other 6 were
neither trimmed nor enriched. Overall, 6 had their number of attributes increased, 3 had their
attributes reduced, and the remaining 6 maintained their number of attributes.

We evaluated with and without these two modules to answer the fourth and fifth questions. Table
11 shows the results of this evaluation, where compares the number of classification tags of the 15
events whether they did not pass through the Trimmer and the Enricher (columns 2, 6 and 10), with
the number of classification tags whether they only did not pass through the Enricher (columns 3,
7 and 11) and with the number of classification tags when processed by all modules (columns 4,
8 and 12). As we can observe, all the events have the same number of tags in columns 2–3, 6–7
and 10–11, meaning that the Trimmer does not remove valuable information for the classification
of events, answering positively to question 4. We can also observe from columns 4, 8 and 12 that
the number of classification tags of 4 events were increased (E3, E8, E9, and E15), where 2 of them
leveraged from the enrichment provided by Enricher (E8, and E15). Therefore, we conclude that the
Enricher improved the quality of the events, answering question 5.
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Table 11. Trimmer and Enricher impact on the number of tags of the 15 events.

without with with without with with without with with
Ex T & E T T & E Ex T & E T T & E Ex T & E T T & E
1 4 4 4 6 4 4 4 11 4 4 4
2 1 1 1 7 1 1 1 12 1 1 1
3 5 5 6 8 1 1 2 13 4 4 4
4 3 3 3 9 0 0 1 14 1 1 1
5 2 2 2 10 1 1 1 15 0 0 1

5.2.4 Clustering. This section aims to assess AECCP ability to correlate different events that share
mutual IoCs, i.e., the Clusterer module, and answer the sixth question.

Since our evaluation dataset is small (64 events) and, therefore, Clusterer might not create many
clusters, we allowed these events to be correlated with events from our ground truth dataset,
thus totalling 1232 events. With this approach, we were able to create 24 clusters. Table 12 de-
tails some of these clusters while the remaining are omitted since they have the same properties,
except their taxonomies, as one of the clusters in this table. For example, clusters 100, 101 and
102 have exactly the same attributes and correlations, but they were created with different tax-
onomies ([unified:malicious-code="worm"], [unified:malicious-code="backdoor"] and
[unified:malicious-code="trojan"]) due to the logic behind of the Clusterer module.

Figure 3 presents one of the clusters that were created by AECCP, identified with ID 21 in Table
12. This cluster is formed by two events (1518 and 1520) that have a common attribute, a link, and a
common UT tag, [unified:malicious-code="ransomware"]. The attribute in common is a link
to https:\\bleepingcomputer.com with news related to ransomware LockerGoga, meaning that
both events are related to the same threat. Because these two events have different information,
except for the single shared link, they complement each other. This type of event correlation can
be precious to a SOC analyst since he can easily gather more information about an event based on
previously received events and give him more indicators that can be used in block rules and other
types of defences, answering thus to question 6.

Table 12. Clusters created by the AECCP.
uCx # events Taxonomy and Description # Att Mutual IoCs
1 2 malicious-code="worm" 416 www.tashdqdxp.com

-Soft Cell case indicators
-Malware with Ties to SunOrcal

9 3 malicious-code="trojan" 68 https://twitter.com/VK_Intel/status/1128079463785349121
-FIN7 JScript Loader Malware
-APT28 XTunnel Backdoor
-Turla Kazuar RAT

10 2 malicious-code="virus" 47 https://twitter.com/VK_Intel/status/1128079463785349121
-FIN7 JScript Loader Malware
-APT28 XTunnel Backdoor

11 2 malicious-code="ransomware" 69 All except one
-Sodinokibi ransomware
-Ransomware exploits WebLogic vulnerability

14 2 malicious-code="cryptominer" 65 CVE-2019-3396
-Botnet Malware Exploits CVE-2019-3396
-SystemTen (ELF trojan, miner, bot and rootkit)

119 2 malicious-code="backdloor" 53 All except three
-Operation ShadowHammer
-Operation ShadowHammer

21 2 malicious-code="ransomware" 28 https://www.bleepingcomputer.com/news/security/
-The Norsk Hydro ransomware attack new-lockergoga-ransomware-allegedly-used-in-
-New LockerGoga Ransomware in Altran Attack altran-attack/
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Fig. 3. Cluster 21 created by AECCP and composed of 2 events: 1518 on the right and 1520 on the left.

5.3 Processing Events with PURE and ETIP Platforms
To demonstrate the AECCP ability to process events processed by other platforms existent in
literature, without losing relevant information by trimming event attributes and enriching the
information they carried and, hence, their threat impact, we processed 6 events from PURE [3].
Also, we compare the resulting events with the PURE versions by submitting them to ETIP [15] to
calculate the threat score (TS) of the threat value they carried.

Table 13 shows the characterization of the 6 events of PURE, namely, for each eIoC, the number
of events it aggregates (#E, column 2), its description (column 3), the number of attributes it contains
(#att, column 4), and its threat score measured by ETIP (TS, column 5).

The 6 events received from PURE were processed by AECCP, producing the results shown in
columns 6 to 8 of the table. As we can observe, AECCP could process events from an external
platform. All of the events, which were not initially tagged, were classified by AECCP (column 8).
Also, the initial number of attributes (column #att) was slightly reduced (column #AT) by Trimmer.
However, as explained in Section 5.2.3, AECCP adds on average 44 attributes per event when it
enriches events. This increase can be seen in column #AE, a price to pay for the added value. On
the other hand, this increase allowed events to gain more information, which apparently is relevant
since their threat impact grew and was reflected in their TS value (last column).
Based on these results, we can answer positively to question 7, meaning AECCP improves the

quality TI better than the other two platforms. Notice that the ETIP platform calculates the TS of
events (enriched IoC), meaning that the platform contains an enricher module that aggregates and
correlates events before calculating TS. Therefore, if the TS value of AECCP’s events is higher than
ETIP’s events, this means that AECCP generates events with better quality than ETIP. The same is
concluded about PURE.

6 IMPROVEMENTS AND FUTUREWORK
The prevention and detection of cyber-attacks have deserved significant attention from organiza-
tions, which have been adopting new strategies and defence mechanisms to protect themselves.
TI has emerged as an ally of organizations, allowing them to access information about threats
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Table 13. PURE events characterization, processed by AECCP, and threat score calculation by ETIP.

PURE and ETIP AECCP and ETIP
ID #E Description #att TS #AT #AE Unified Taxonomy TS
E1 2 - OSINT Aveo Malware Family Targets Japanese Speaking 82 1.29 77 87 malicious-code="backdloor" 1.29

- Pivot on whois registrant 844148030@qq.com malicious-code="trojan"
E2 2 - OSINT - Packrat: Seven Years of a South American 267 2.54 257 423 availability="dos-or-ddos" 2.68

Threat Actor fraud="phishing"
- Packrat: Seven Years of a South American Threat Actor malicious-code="backdloor"

malicious-code="dos"
malicious-code="ransomware"
malicious-code="trojan"
malicious-code="worm"

E3 2 - Expansion on 596552@qq.com 274 3.22 273 401 malicious-code="backdloor" 3.50
- New Variant of Gh0st Malware by Palo Alto Networks malicious-code="trojan"
Unit 42

E4 3 - Spear Phishing Attack Using Cobalt Strike 85 2.53 78 159 abusive-content="spam" 2.58
Against Financial Institutions fraud="phishing"

- RTF files for Hancitor utilize exploit for CVE-2017-11882 malicious-code="exploit"
- Targeted Attack in the Middle East by APT34, malicious-code="spammer"
using CVE-2017-11882 malicious-code="trojan"

vulnerable="vulnerable-service"
E5 3 - EPS Processing Zero-Days Exploited by Multiple 156 2.87 146 361 information-gathering="scanning" 3.12

Threat Actors malicious-code="backdloor"
- Malicious Documents Targeting Security Professionals malicious-code="exploit"
- APT28 Targets Hospitality Sector, Presents Threat malicious-code="ransomware"
to Travelers malicious-code="trojan"

malicious-code="worm"
vulnerable="vulnerable-service"

E6 4 - Sakula Malware Family 842 3.11 821 2907 information-gathering="scanning" 3.40
- Cyber-Kraken (Threat Group 3390 / Emissary Panda) malicious-code="backdloor"
- Korean Website Installs Banking Malware malicious-code="trojan"
- Sakula Reloaded

#E:number of events; #att: number of attributes; TS: threat score;
#AT: number of attributes after Trimmer; #AE: number of attributes after Enricher

that have occurred. They use TI for various purposes, namely, to verify whether their assets are
vulnerable to an attack that has occurred, to update their defence mechanisms with rules and
patterns on announced threats, and to check whether their assets have been victims of an attack.

TI must be timeless for organizations to be proactive on time and avoid severe damages. However,
TI only announces attacks after they have already occurred, thus being a reactive notification [41]
[51] and not much useful for victim organizations. To develop proactive TI, it is necessary to obtain
data from the online hacker community to understand what is happening in that community and
try to predict possible malicious actions. One way to do this is to access underground forums where,
for example, hackers exchange technical mechanisms and tutorials of malicious tools that they can
use to carry out attacks [41]. These tools can be found and purchased within the Dark-web (DW),
more precisely in Dark-net markets. Also, dark-net forums are placed within the Dark-web for
hacker community [2]. By accessing the DW data and collecting and analyzing it, it is possible to
identify emerging hacker threats, so proactive TI [42].

The AECCP was designed in light of traditional TI, meaning that the unified taxonomy and the
main threat attributes were defined based on public taxonomies and security events of traditional
TI. The AECCP can benefit from DW data in various ways, namely,
• the unified taxonomy can be extended with Tier 2 tags and bag of words based on terms only
observed in DW and that are related to an incident category (Tier 1 level) of UT;
• process data provided by DW sources, classifying it with the extended UT and aggregating it
with (i) some other DW data associated with the same attack intent. In this case, SOC analysts
can get insights about malicious actions and anticipate potential attacks that have been
planned, and then be proactive and make decisions to prevent them against the organization;
(ii) traditional TI that already exists from some announced misbehaviour, but no associations
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and have been passed unnoticed for security analysts (e.g., some attacks that have been
planned but not yet fully executed). In this case, the SOC analyst can also be proactive and
activate the necessary protections against the attack; (iii) traditional TI from an already
occurred attack. In this case, the resulting information is reactive, but the analyst can have
access to information about the attack plan, and, from there, make some decision based on
that;
• make the necessary modifications in the AECCP to accept the different formats that the DW
data can be provided.

7 CONCLUSION
In this paper, we proposed and presented the Automated Event Classification and Correlation Plat-
form (AECCP), an implementation of an approach to improve quality threat intelligence produced
by threat intelligence platforms (TIPs) by classifying and enriching it automatically. AECCP is
composed of a set of smaller solutions; each one focused on one or more limitations of TIPs, which
were verified in a detailed data analysis over an intelligence dataset of more than 1000 security
events. Regarding threat knowledge management limitations and technology enablement in threat
triage limitations, the platform integrates a Classifier that classifies each event according to a single
unified taxonomy proposed by us. To deal with the high volume of shared threat information, we
proposed a Trimmer for trimming the low-value information from each event, based onmain threat
attributes we discovered upon the data analysis. AECCP contains an Enricher for data improvement
that enriches each event based on intelligence collected from VirusTotal. Lastly, to address advanced
analytics limitations, we proposed a Clusterer that creates clusters of events that share information
and context about the same threat and represents each cluster as an AECCP event.
To prove the applicability and feasibility of AECCP, the platform was developed based on the

MISP platform. AECCP was validated over more than a thousand events and tested against a dataset
of 64 newer and not used events and 6 events produced by a different platform, the PURE. From
these tests, we created 24 clusters, classified, trimmed and enriched by AECCP, and we were able
to trim and enrich the events produced by PURE. Also, these events were processed by another
platform, ETIP, to calculate their threat score. The results showed that AECCP produces quality TI
better than the others platforms.
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